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Abstract
We study problems of maximal symmetry in Banach spaces. This is done by pro-
viding an analysis of the structure of small subgroups of the general linear group
GL.X/, where X is a separable reflexive Banach space. In particular, we provide
the first known example of a Banach space X without any equivalent maximal norm,
or equivalently such that GL.X/ contains no maximal bounded subgroup. Moreover,
this space X may be chosen to be super-reflexive.
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1. Introduction

1.1. Maximal norms and the problems of Mazur and Dixmier
Two outstanding problems of functional analysis are Mazur’s rotation problem, ask-
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ing whether any separable Banach space whose isometry group� acts transitively on
the sphere must be a Hilbert space, and Dixmier’s unitarizability problem, asking
whether any countable group, all of whose bounded representations on Hilbert space
are unitarizable, must be amenable. Although these problems do not on the surface
seem to be related, they both point to common geometric aspects of Hilbert space that
are far from being well understood.

Mazur’s problem, which can be found in Banach’s classical work (see [7]), is
perhaps best understood as two separate problems, both of which remain open to this
day.

Problem 1.1 (Mazur’s rotation problem, first part)
Suppose thatX is a separable Banach space whose isometry group acts transitively on
the sphere SX . Is X Hilbertian, that is, isomorphic to the separable Hilbert space H?

We remark that, in order for the problem to be nontrivial, the separability condi-
tion in the hypothesis is necessary. This is because the isometry group of Lp induces
a dense orbit on the sphere (see [36], [58]) and thus the isometry group will act tran-
sitively on any ultrapower of Lp , which itself is an Lp-space.

Problem 1.2 (Mazur’s rotation problem, second part)
Suppose that kj � jk is an equivalent norm on H such that Isom.H ;kj � jk/ acts transi-
tively on the unit sphere Skj�jk

H
. Is kj � jk necessarily Euclidean?

Establishing a vocabulary to study these problems, Pełczyński and Rolewicz [52]
(see also Rolewicz [58]) defined the norm k � k of a Banach space X to be maximal if
whenever kj � jk is an equivalent norm on X with

Isom
�
X;k � k

�
� Isom

�
X;kj � jk

�
;

that is, Isom.X;k � k/ being a subgroup of Isom.X;kj � jk/, then

Isom
�
X;k � k

�
D Isom

�
X;kj � jk

�
:

Also, the norm is transitive if the isometry group acts transitively on the unit sphere.
Thus, a norm is maximal if one cannot replace it by another equivalent norm that

has strictly more isometries, or, more suggestively, if the unit ball Bk�kX is a maximally

symmetric body in X . Note also that, if k � k is transitive, then the unit sphere Sk�kX
is the orbit of a single point x 2 Sk�kX under the action of Isom.X;k � k/, and so any

�Since we are treating only groups of linear isometries, henceforth, any isometry will be assumed to be invertible
and linear. Moreover, we let Isom.X;k � k/ denote the group of all invertible linear isometries of a given Banach
space .X;k � k/, while GL.X/ denotes the group of all bounded invertible operators on X .
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proper supergroup G of Isom.X;k � k/ inside of GL.X/ must send x to some point
�x for j�j ¤ 1, from which it follows that G cannot be a group of isometries for any
norm. So transitivity implies maximality, and thus the standard Euclidean norm k � k2
is maximal on H . Also, Mazur [47] himself showed that any transitive norm on a
finite-dimensional space is, in effect, Euclidean (see the survey papers by Cabello-
Sánchez [13] and Becerra Guerrero and Rodríguez-Palacios [8] for more information
on the rotation problem and maximal norms, and also [12] for results in the purely
metric case).

Another way of understanding these concepts, pointing toward the unitarizabil-
ity problem of Dixmier, is by considering the G-invariant norms corresponding to
a bounded subgroup G � GL.X/. Here G is bounded if kGk D supT2G kT k <1.
Note first that if G is bounded, then

kjxjk D sup
T2G

kT xk

defines an equivalent G-invariant norm on X ; that is, G � Isom.X;kj � jk/. Moreover,
if k �k is uniformly convex, then so is kj � jk (see, e.g., [6, Proposition 2.3]). However, if
X DH and k � k is Euclidean, that is, induced by an inner product, then kj � jk will not,
in general, be Euclidean. The question of which bounded subgroups of GL.H / admit
invariant Euclidean norms has a long history. It is a classical result of representa-
tion theory dating back to the beginning of the twentieth century that if G �GL.Cn/
is a bounded subgroup, then there is a G-invariant inner product, thus inducing a
G-invariant Euclidean norm. Also, in the 1930s, Szőkefalvi-Nagy [65, Theorem I]
showed that any bounded representation � W Z! GL.H / is unitarizable, that is, H

admits an equivalent �.Z/-invariant inner product and, with the advent of amenability
in the 1940s, this was extended by Day [18] and Dixmier [22] to any bounded rep-
resentation of an amenable topological group, via averaging over an invariant mean.
In the opposite direction, Ehrenpreis and Mautner [24] constructed a nonunitarizable
bounded representation of SL2.R/ on H , and the group SL2.R/ was later replaced
by any countable group containing the free group F2. However, since, by a result
of Ol’šhanskiı̆ [51], F2 does not embed into all nonamenable countable groups, the
question of whether the result of Szőkefalvi-Nagy, Day, and Dixmier reverses still
remains pertinent.

Problem 1.3 (Dixmier’s unitarizability problem)
Suppose that � is a countable group all of whose bounded representations on H are
unitarizable. Is � amenable?

Nevertheless, though not every bounded representation of F2 in GL.H / is uni-
tarizable, it still seems to be unknown whether all of its bounded representations
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admit equivalent invariant maximal or even transitive norms. And similarly, while
the second part of the rotation problem asks whether any equivalent transitive norm
on H is Euclidean, the stronger question of whether any equivalent maximal norm
is Euclidean also remains open. Of course, the counterexample of Ehrenpreis and
Mautner limits how much of these two questions can hold simultaneously (see the
recent survey by Pisier [54] and also [25] and [49] for the current status of Dixmier’s
problem).

In a more general direction, the work of Pełczyński and Rolewicz led people
to investigate which spaces have maximal norms. Since any bounded subgroup G �
GL.X/ is contained in a group of isometries for an equivalent norm, one observes
that a norm k � k is maximal if and only if the corresponding isometry group is a max-
imal bounded subgroup of GL.X/. Thus, in analogy with the existence of maximal
compact subgroups of semisimple Lie groups, it is natural to suspect that a judicious
choice of smoothing procedures on a spaceX could eventually lead to a most symmet-
ric norm, which then would be maximal on X . But, even so, fundamental questions
on maximal norms have remained open, including notably the long-standing problem,
formulated by Wood in [68], of whether any Banach space X admits an equivalent
maximal norm. In fact, even the question of whether any boundedG �GL.X/ is con-
tained in a maximal bounded subgroup was hitherto left unresolved. Our main result
answers these, as well as another problem of Deville, Godefroy, and Zizler [21], in
the negative.

THEOREM 1.4
There is a separable super-reflexive Banach space X such that GL.X/ contains no
maximal bounded subgroups, that is, X has no equivalent maximal norm.

1.2. Nontrivial isometries of Banach spaces
A second motivation and a source of tools for our work comes from the seminal
construction of Gowers and Maurey [35] of a space GM with a small algebra of
operators, namely, such that any operator on GM is a strictly singular perturbation of
a scalar multiple of the identity map. The strongest result to date in this direction, due
to Argyros and Haydon [4], is the construction of a Banach space AH on which every
operator is a compact perturbation of a scalar multiple of the identity. Furthermore,
since AH has a Schauder basis, every compact operator is a limit of operators of finite
rank.

These results largely answer the question of whether every Banach space admits
nontrivial operators, but one can ask the same question for isometries, that is, does
every Banach space admit a nontrivial surjective isometry? After partial answers by
Semenev and Skorik [60] and Bellenot [9], one version of this question was answered
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in the negative by Jarosz [39]. Jarosz proved that any real or complex Banach space
admits an equivalent norm with only trivial isometries, namely, such that any surjec-
tive isometry is a scalar multiple of the identity, �Id, for j�j D 1. Thus, no isomorphic
property of a space can force the existence of a nontrivial surjective linear isometry.

Of course, this does not prevent the group of isometries to be extremely nontrivial
in some other equivalent norm. So one would like results relating the size of the isom-
etry group Isom.X;k � k/, for any equivalent norm k � k, with the isomorphic structure
of X . Let us first remark that any infinite-dimensional Banach space X can always
be equivalently renormed such that X D F ˚1 H , where F is a finite-dimensional
Euclidean space. So, in this case, Isom.X/ will at least contain a subgroup isomor-
phic to Isom.F /. Actually, if X is a separable, infinite-dimensional, real space and G
is a finite group, then it is possible to find an equivalent norm for which ¹�1; 1º �G
is isomorphic to the group of isometries on X (see [29], [63]).

Thus, allowing for renormings, we need a less restrictive concept of when an
isometry is trivial.

Definition 1.5
A bounded subgroup G � GL.X/ acts nearly trivially on X if there is a G-invariant
decomposition X D F ˚ H , where F is finite-dimensional and where G acts by
trivial isometries on H .

As an initial step toward Theorem 1.4, we show that in a certain class of spaces,
each individual isometry acts nearly trivially. For that, we need to improve on some
earlier work of Räbiger and Ricker [55], [56]. By their results, any isometry of a so-
called hereditarily indecomposable complex Banach space is a compact perturbation
of a scalar multiple of the identity, but this can be improved as follows.

THEOREM 1.6
Let X be a Banach space containing no unconditional basic sequence and on which
every operator is of the form �IdC S , for S strictly singular. Then each individual
isometry acts nearly trivially on X .

The main problem is then to investigate when we can proceed from single isome-
tries acting nearly trivially to an understanding of the global structure of the isometry
group Isom.X/. Disregarding for the moment the scalar multiples of the identity on
X , we consider the automorphisms of X that individually act nearly trivially on X .
For this, we let GLf .X/ denote the subgroup of GL.X/ consisting of all automor-
phisms of the form

IdCA;
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where A is a finite-rank operator on X . We then establish, in the case of separable
reflexive X , the structure of bounded subgroups of GLf .X/ that are strongly closed
in GL.X/. The following statement refers to the strong operator topology on G.

THEOREM 1.7
Suppose that X is a separable reflexive Banach space and that G � GLf .X/ is
bounded and strongly closed in GL.X/. Let also G0 �G denote the connected com-
ponent of the identity in G.

Then G0 acts nearly trivially on X and therefore is a compact Lie group. More-
over, G0 is open in G, while G=G0 is a countable, locally finite and thus amenable
group. It follows that G is an amenable Lie group.

Furthermore, X admits a G-invariant decomposition X DX1˚X2˚X3˚X4,
where
(1) no nonzero point of X1 has a relatively compact G-orbit;
(2) every G-orbit on X2˚X3˚X4 is relatively compact;
(3) X4 is the subspace of points which are fixed by G;
(4) X3 is finite-dimensional or has a finite-dimensional decomposition;
(5) X2 is finite-dimensional and X1 ˚X3 ˚X4 is the subspace of points which

are fixed by G0;
(6) if X1 D ¹0º, then G acts nearly trivially on X ;
(7) if X1 ¤ ¹0º, then X1 is infinite-dimensional, has a finite-dimensional decom-

position, and admits a G-invariant Schauder decomposition (possibly with
finitely many terms),

X1 D Y1˚ Y2˚ � � � ;

where every Yi has a Schauder basis.

Combining Theorem 1.6 with a somewhat simpler version of Theorem 1.7 along
with an earlier construction of a super-reflexive hereditarily indecomposable space
due to the first author [27], we are able to conclude the following result from which
Theorem 1.4 is easily obtained.

THEOREM 1.8
Let X be a separable, reflexive, hereditarily indecomposable, complex Banach space
without a Schauder basis. Then, for any equivalent norm onX , the group of isometries
acts nearly trivially on X .

Moreover, there are super-reflexive spaces satisfying these hypotheses.

Note that if Isom.X;k � k/ acts nearly trivially on X , it is isomorphic to a closed
subgroup of a finite-dimensional unitary group and thus is itself a compact Lie group.
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Now, as shown by von Neumann and Wigner [67], there are countable minimally
almost periodic groups, that is, countable discrete groups admitting no nontrivial
finite-dimensional unitary representations or, equivalently, such that any homomor-
phism into a compact Hausdorff group is trivial. An example of such a group is
PSL2.Q/, that is, the quotient of the group SL2.Q/ of rational (2 � 2)-matrices with
determinant 1 by its center ¹I;�I º. By Theorem 1.8, it follows immediately that
no minimally almost periodic group admits a bounded linear representation on a
separable, reflexive, hereditarily indecomposable, complex Banach space without a
Schauder basis.

2. Notation and complexifications

2.1. Some notation and terminology
For a Banach space X , we denote by L.X/ the algebra of continuous linear operators
on X , by GL.X/ the general linear group of X , that is, the group of all continuous
linear automorphisms of X , and by Isom.X/ the group of surjective linear isometries
of X . In the remainder of the paper, unless explicitly stated otherwise, an isometry of
X is always assumed to be surjective, so we will not state this hypothesis explicitly.
We also denote the unit sphere of X by SX and the closed unit ball by BX . When
x1; : : : ; xn is a sequence of vectors inX , we let Œx1; : : : ; xn� denote the linear subspace
spanned by the xi .

If X is a complex space and T is an operator on X , �.T / denotes the spectrum
of T and one observes that �.T / is a subset of the unit circle T whenever T is an
isometry. On the other hand, if T is compact, then T is a Riesz operator, which means
that �.T / is either a finite sequence of eigenvalues with finite multiplicity together
with 0, or an infinite converging sequence of such eigenvalues together with the limit
point 0.

As our proofs use methods from representation theory, spectral theory, and
renorming theory, as well as general Banach space theory, we have tried to give self-
contained and detailed proofs of our results in order for the paper to remain readable
for a larger audience. Of course, some of the background material is true in a broader
setting, which may be easily found by consulting the literature. Our main references
will be Dunford and Schwartz [23] for spectral theory, Deville, Godefroy, and Zizler
[21] for renorming theory, and Lindenstrauss and Tzafriri [44], [45] and Benyamini
and Lindenstrauss [10] for general Banach space and some operator theory. We also
recommend Fleming and Jamison [31], especially Chapter 12, for more information
on isometries of Banach spaces.
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2.2. Complex spaces versus real spaces
Our main results will be valid both in the real and the complex settings, though dif-
ferent techniques will sometimes be needed to cover each separate case.

For the part of our demonstrations using spectral theory, as is classical, we first
prove our results in the complex case and thereafter use complexification to extend
them to the real case. We recall briefly how this is done and the links that exist between
a real space and its complexification.

If X is a real Banach space with norm k � k, the complexification OX of X is
defined as the Cartesian square X �X , whose elements are written xC iy rather than
.x; y/ for x;y 2X , equipped with the complex scalar multiplication given by

.aC ib/ � .xC iy/D ax � by C i.bxC ay/;

for a; b 2R and x;y 2X , and with the equivalent norm

kjxC iyjk D sup
�2Œ0;2��

��ei� .xC iy/��
2
;

where

kxC iyk2 D
p
kxk2Ckyk2:

Any operator in L. OX/ may be written of the form T C iU , where T;U belong to
L.X/, that is, for x;y 2X ,

.T C iU /.xC iy/D T x �Uy C i.UxC Ty/:

We denote by c the natural isometric homomorphism from L.X/ into L. OX/ associ-
ating to T the operator OT defined by

OT D T C i0:

It is then straightforward to check that the image by c of an automorphism (resp.,
isometry, finite-rank perturbation of the identity, compact perturbation of the identity)
of X is an automorphism (resp., isometry, finite-rank perturbation of the identity,
compact perturbation of the identity) of OX . In other words, the map c provides an
embedding of natural subgroups of GL.X/ into their counterparts in GL. OX/.

Conversely, in renorming theory it is usually assumed that the spaces are real.
One obtains renorming results on a complex space X simply by considering only its
R-linear structure which defines a real space XR. It is well known that many isomor-
phic properties of a space do not depend on it being seen as real or complex, and we
recall here briefly the facts that we will rely on later.

First, by [10], a space X has the Radon–Nikodym property (RNP) if and only if
every Lipschitz function from R into X is differentiable almost everywhere, which
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only depends on the R-linear structure of X . A space X is reflexive if and only if the
closed unit ball of X is weakly sequentially compact, and hence X is reflexive if and
only if XR is reflexive.

Moreover, the map � 7! Re.�/ is an R-linear isometry from X� onto .XR/
� with

inverse  7! � defined by

�.x/D .x/� i .ix/:

So the dual norms on X� and .XR/
� coincide up to this identification and X has

separable dual if and only if XR has. Likewise, if � is a C-support functional for
x0 2 SX (i.e., �.x0/D k�k D 1), then Re.�/ is an R-support functional for x0. Thus,
the above identification shows that if in a complex space a point x in SX has a unique
R-support functional, then it has a unique C-support functional, which, in particular,
happens when the norm on X is Gâteaux differentiable (see [21]).

3. Bounded subgroups of GL.X/
In this section, we will review some general facts about bounded subgroups of
GL.X/. While all of the material here, apart from Theorems 3.4 and 3.11, is well
known, it may not be available in any single source.

3.1. Topologies on GL.X/
Suppose that X is a real or complex Banach space and that G � GL.X/ is a weakly
bounded subgroup, that is, such that for any x 2X and � 2X�,

sup
T2G

ˇ̌
�.T x/

ˇ̌
<1:

Then, by the uniform boundedness principle, G is actually norm bounded, that is,

kGk D sup
T2G

kT k<1:

So without ambiguity we can simply refer to G as a bounded subgroup of GL.X/.
Note that if G is bounded, then

kjxjk D sup
T2G

kT xk

is an equivalent norm on X such that G acts by isometries on .X;kj � jk/. Therefore,
bounded subgroups of GL.X/ are simply subgroups of the isometry groups of equiv-
alent norms on X .

Let us also stress the fact that, although the operator norm changes when X is
given an equivalent norm, the norm, weak, and strong operator topologies on GL.X/
remain unaltered.
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Recall that if X is separable, the isometry group, Isom.X/, is a Polish group in
the strong operator topology, that is, a separable topological group whose topology
can be induced by a complete metric. Since any strongly closed bounded subgroup
G �GL.X/ can be seen as a strongly closed subgroup of Isom.X/ for an equivalent
norm on X , provided that X is separable, we find that G is a closed subgroup of a
Polish group and hence is Polish itself.

Note also that the norm induces an invariant, complete metric on Isom.X/, that
is, kTSU � TRU k D kS � Rk for all T;S;R;U 2 Isom.X/, and so Isom.X/ and,
similarly, any bounded subgroup G � GL.X/, is a SIN group in the norm topology,
that is, admits a neighborhood basis at the identity consisting of conjugacy-invariant
sets.

Of course, even when X is separable, the norm topology is usually nonseparable
on Isom.X/, but, as we will see, for certain small subgroups of GL.X/ it coincides
with the strong operator topology, which allows for an interesting combination of
different techniques.

Note that if X is separable, we can choose a dense subset of the unit sphere
¹xnº � SX and corresponding support functionals ¹�nº � SX� , �n.xn/ D 1. Using
these, we can write the closed unit ball BX as

BX D
\
n;m

®
x 2X

ˇ̌
�n.x/ < 1C 1=m

¯
;

which shows that BX is a countable intersection of open half-spaces in X and simi-
larly for any other closed ball in X . Thus, if � W G! GL.X/ is a bounded, weakly
continuous representation of a Polish group G, then for any x 2X and � > 0, the set

®
g 2G

ˇ̌
�.g/x 2B.x; �/

¯

is a countable intersection of open sets in G and hence is Borel. It follows that � is a
Borel homomorphism from a Polish group into the separable group .�.G/;SOT/ and
hence, by Pettis’s theorem (see [41, (9.10)]), � is strongly continuous.

PROPOSITION 3.1
Let X be a separable Banach space, and let � W G! GL.X/ be a bounded, weakly
continuous representation of a Polish group G. Then � is strongly continuous.

In fact, if X� is separable, the weak and strong operator topologies coincide on
any bounded subgroup G �GL.X/ (see, e.g., [48] for more information on this).

What is more important is that if � W G ! GL.X/ is a strongly continuous
bounded representation of a Polish group, the induced dual representation �� W G!
GL.X�/ is in general only ultraweakly continuous, that is, ��.gi /.�/ �!

weak�
��.g/.�/
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for � 2X� and gi ! g. Of course, if X is separable and reflexive, this means that ��

is weakly continuous and thus also strongly continuous.
In the following, the default topology on GL.X/ and its subgroups is the strong

operator topology. So, unless otherwise stated, all statements refer to this topology.

Moreover, if G � GL.X/, then G
SOT

refers to the strong closure in GL.X/ and not
in L.X/. This is important, since even a bounded subgroup that is strongly closed
in GL.X/ may not be strongly closed in L.X/; for example, the unitary group of
infinite-dimensional Hilbert space, U.`2/, is not strongly closed in L.`2/. This is
in opposition to the well-known fact that any bounded subgroup that is norm closed
in GL.X/ is also norm closed in L.X/. However, for potentially unbounded G �

GL.X/, we let G
k�k

denote the norm closure of G in GL.X/.
A topological group G is said to be precompact if any nonempty open set U�

G covers G by finitely many left translates; that is, G D AU for some finite set
A�G. For Polish groups, this is equivalent to being compact, but, for example, any
nonclosed subgroup of a compact Polish group is only precompact and not compact.

For the next proposition, we recall that a vector x 2X is said to be almost peri-
odic with respect to some G � GL.X/ if the G-orbit of x is relatively compact or,
equivalently, totally bounded in X (i.e., is covered by finitely many �-balls for all
� > 0). In analogy with this, G is said to be almost periodic if every x 2X is almost
periodic.

PROPOSITION 3.2
Suppose that X is a Banach space and that G �GL.X/ is a bounded subgroup. Then
the following are equivalent:
(1) X is the closed linear span of its finite-dimensional irreducible subspaces;
(2) G is almost periodic;
(3) G is precompact;

(4) G
SOT

is compact.

Proof
(1))(2): Using that relative compactness is equivalent to total boundedness, it is an
easy exercise to see that the set of almost periodic points form a closed linear subspace
and, moreover, since G is bounded, any finite-dimensional G-invariant subspace is
contained in the set of almost periodic points. So (2) follows from (1).

(2))(3): Note that if G is not precompact in the strong operator topology, then
there is an open neighborhood U of Id that does not cover G by a finite number
of left translates. It follows that we can find a finite sequence of normalized vectors
x1; : : : ; xn 2X , � > 0 and an infinite set A�G such that for distinct T;U 2A there
is i with kT xi �Uxik> �. But then, by the infinite version of Ramsey’s theorem (see
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[57]), we may find some i and some infinite subset B of A such that kT xi �Uxik> �
whenever T;U 2B are distinct, which shows that the G-orbit of xi is not relatively
compact.

(3))(4): If G is precompact, G
SOT

is easily seen to be precompact. It follows

that every G
SOT

-orbit is totally bounded, that is, relatively compact. So, to see that

G
SOT

is compact, let .gi / be a net in G
SOT

, and pick a subnet .hj / such that, for every
x 2X , .hjx/ and .h�1j x/ converge to some T x and Sx, respectively. It follows that

S D T �1 2G
SOT

, and so .hj / converges in the strong operator topology to T 2G
SOT

.

Since every net has a convergent subnet, G
SOT

is compact.

(4))(1): Suppose that G
SOT
�GL.X/ is compact, and consider the tautological

strongly continuous representation � W G
SOT
! GL.X/. By a result going back to at

least Shiga [61, Theorem 2], since G
SOT

is compact, X is the closed linear span of
its finite-dimensional irreducible subspaces, that is, minimal nontrivial G-invariant
subspaces, and so (1) follows. (Note that the result of Shiga is stated only for the
complex case in [61], but the real case follows from considering the complexification.)

On several occasions we will use the following theorem due to Gelfand (see [37,
Theorem 4.10.1]). If T is an element of a complex unital Banach algebra A, for exam-
ple, ADL.X/, with �.T /D ¹1º and supn2Z kT

nk<1, then T D 1.
Since GL.X/ is a norm-open subset of the Banach space L.X/, it is a Banach–

Lie group, but is of course far from being a (finite-dimensional) Lie group. As with
any Banach–Lie group, GL.X/ is NSS (has no small subgroups) in the norm topology.
More precisely, we have the following.

THEOREM 3.3
LetX be a Banach space. Then, in the norm topology, GL.X/ has no small subgroups,
that is, there is � > 0 (in fact �D

p
2) such that

®
T 2GL.X/

ˇ̌
kT � Idk< �

¯

contains no nontrivial subgroup.
If follows that if G � GL.X/ is locally compact, second countable in the norm

topology, then G is a Lie group.

Proof
Assume first that X is a complex space. We claim that for any T 2 GL.X/ such
that .T n/n2Z is bounded, any � 2 �.T / is an approximate eigenvalue, that is, T xn �
�xn! 0 for some xn 2 SX . For otherwise, T � �Id is bounded away from zero and
hence will be an embedding of X into X whose range is a closed proper subspace of



ON ISOMETRY GROUPS AND MAXIMAL SYMMETRY 1783

X . Since X can be renormed so that T is an isometry, we have that �.T /� T, and so
we may find �n … �.T / such that �n! �. Therefore, if we choose y … im.T � �Id/,
there are xn 2 X such that T xn � �nxn D y and so either kxnk is bounded or can
be assumed to tend to infinity. In the second case, we see that for zn D

xn
kxnk

one has
T zn � �nzn D

y
kxnk
! 0 and so also T zn � �zn! 0, contradicting that T � �Id is

bounded away from 0. And, in the first case,
��.T xn � �xn/� y

��D ��.T xn � �xn/� .T xn � �nxn/
��D j�n � �j � kxnk! 0;

contradicting that y is not in the closed subspace im.T � �Id/.
Now let T 2GL.X/ satisfy kT n � Idk<

p
2 for all n 2 Z. If � 2 �.T /, then �n

is an approximate eigenvalue of T n for any n 2 N, and so it follows that j�n � 1j <
p
2 for all n 2 N and therefore that �D 1. So �.T /D ¹1º. It suffices now to apply

Gelfand’s theorem to conclude that T D Id. We have thus shown that ¹T 2 GL.X/ j
kT � Idk<

p
2º contains no nontrivial subgroup.

If X is a real Banach space, it suffices again to consider the complexification
of X .

For the second part of the theorem, we note that by the Gleason–Montgomery–
Zippin–Yamabe solution to Hilbert’s fifth problem (see, e.g., [40] for an exposition),
any locally compact, second countable group with no small subgroups is a Lie group.

3.2. Ideals and subgroups of GL.X/
Note that when I � L.X/ is a two-sided operator ideal, the subgroup GLI.X/ of
GL.X/ consisting of all I-perturbations of the identity, that is, invertible operators of
the form

T D IdCA;

where A 2 I, is normal in GL.X/. Moreover, if I is norm closed in L.X/, then
GLI.X/ is a norm-closed subgroup of GL.X/.

Of particular importance for our investigation are the ideals of respectively finite-
rank, almost finite-rank, compact, strictly singular, and inessential operators. Namely,
� F .X/D ¹T 2L.X/ j T has finite rankº;
� AF .X/D F .X/

k�k
;

� K.X/D ¹T 2L.X/ j T is compactº;
� S.X/D ¹T 2L.X/ j T is strictly singularº;
� In.X/D ¹T 2L.X/ j T is inessentialº.
Here an operator T 2 L.X/ is said to be strictly singular if there is no infinite-
dimensional subspace Y � X such that T W Y ! X is an isomorphic embedding.
Also, T 2L.X/ is inessential if for any S 2L.X/, the operator IdCST is Fredholm,
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that is, has closed image, finite-dimensional kernel, and finite corank. In particular, for
any T 2 In.X/ and t 2 Œ0; 1�, IdC tT is Fredholm and IdC T must have Fredholm
index 0, since the index is norm continuous and .IdC tT /t2Œ0;1� is a continuous path
from Id to IdC T . (More information about the ideal of inessential operators may be
found in [32].) We then have the following inclusions,

F .X/�AF .X/�K.X/� S.X/� In.X/;

which give us similar inclusions between the corresponding subgroups of GL.X/ that,
for simplicity, we denote respectively by

GLf .X/�GLaf .X/�GLc.X/�GLs.X/�GLin.X/:

We also note that the ideals AF .X/, K.X/, and S.X/ are norm closed in L.X/. The
group GLc.X/ is usually called the Fredholm group, though sometimes this refers
more specifically to GLc.`2/.

To simplify notation, we also let

Isomf .X/D Isom.X/\GLf .X/

and

Isomaf .X/D Isom.X/\GLaf .X/

denote the normal subgroups of Isom.X/ consisting of all so-called finite-dimensional
(resp., almost finite-dimensional ) isometries. By reason of Theorem 3.4 below, these
are the only two cases we are interested in.

Note that, since the compact operators form the only nontrivial norm-closed ideal
of L.`2/ (see [15]), we have

GLaf .`2/DGLc.`2/DGLs.`2/:

Similarly, if X has the approximation property, then K.X/ D AF .X/ and hence
GLaf .X/DGLc.X/. Though these equalities do not hold for general Banach spaces,
as we will see now, any bounded subgroup of GLin.X/ is contained in GLaf .X/, so
from our perspective, there is no loss of generality in only considering GLaf .X/.
It should be noted that Theorem 3.4 generalizes and simplifies results of Räbiger
and Ricker ([55, Theorem 3.5], [56, Proposition 2.2]) and Ferenczi and Galego [29,
Proposition 49].

THEOREM 3.4
Let X be a Banach space, and let G � GLin.X/ be a bounded subgroup. Then G is
contained in GLaf .X/.
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Proof
It suffices to show that if T 2 GLin.X/ and ¹T n j n 2 Zº is bounded, then T 2
GLaf .X/. For this, we may assume that X is infinite-dimensional.

Suppose first that X is complex, and work in the norm topology on L.X/. Con-
sider the quotient algebra

B DL.X/=AF .X/;

and let

˛ W L.X/!B

be the corresponding quotient map.
Fix T D IdCU 2GLin.X/, and note that if �¤ 1, then T ��IdD .1��/.IdC

U=.1� �// is Fredholm with index 0, and so T ��Id is a perturbation of an invertible
operator by an operator in F .X/. Therefore, ˛.T � �Id/ D ˛.T / � �˛.Id/ is an
invertible element of B and hence � … �.˛.T //. We deduce that �.˛.T //D ¹1º, and
since ¹˛.T /n j n 2 Zº is bounded in the unital Banach algebra B, Gelfand’s theorem
implies that ˛.T /D ˛.Id/. So T � Id belongs to AF .X/, which concludes the proof
of the complex case. Note that our proof in fact applies to any ideal U containing the
finite-rank operators and such that any U-perturbation of Id is Fredholm.

If instead X is real, we consider its complexification OX and the ideal

UD In.X/C iIn.X/

of L. OX/, and observe that it contains F . OX/DF .X/C iF .X/.
We claim that for all U C iV in U, IdCU C iV is Fredholm on OX . Admitting

the claim, we see that given T 2 GLin.X/, one can apply the proof in the complex
case to OT , which is a U-perturbation of Id, and since then OT 2GLaf . OX/ deduce that
T 2GLaf .X/, thereby concluding the proof.

To prove the claim, note that since IdCU is Fredholm with index 0 on X , there
exist A 2GL.X/ and F 2 F .X/ such that IdCU DACF . Then

IdCU C iV DACF C iV DA.IdCA�1F C iA�1V /;

which indicates that it is enough to prove that IdC iV is Fredholm for any V 2U.
Fix such a V , write Id C V 2 D B C L, where B 2 GL.X/ and L 2 F .X/,

let F be the finite-dimensional subspace B�1LX , let H be a closed subspace such
that X D F ˚ H , let ı D d.SHCiH ;F C iF / > 0, and let � > 0 be such that
p
2�kB�1k.1CkV k/ < ı.

Let x;y 2 X , and assume that k.IdC iV /.x C iy/k � �. An easy computation
shows that



1786 FERENCZI and ROSENDAL

kx � Vyk � �

and

kVxC yk � �;

whereby

kBxCLxk D
��.IdC V 2/x��� ��1CkV k�;

and

d.x;F /� �kB�1k
�
1CkV k

�
< ı=
p
2:

Similarly d.y;F / < ı=
p
2, and so d.x C iy;F C iF / < ı. Conversely, this means

that if xC iy is a norm 1 vector in H C iH , then
��.IdC iV /.xC iy/��> �;

and so the restriction of IdC iV to the finite-codimensional subspace H C iH is an
isomorphism onto its image. This proves that IdC iV has finite-dimensional kernel
and closed image. In particular, its Fredholm index is defined, with the possible value
�1, but then the continuity of the index implies that this index is zero and therefore
that IdC iV is Fredholm. This concludes the proof of the claim and of the theorem.

Note that if K denotes the scalar field of X , then

K? D
®
�Id

ˇ̌
� 2K n ¹0º

¯

is a norm-closed subgroup of GL.X/. Also, if I is a proper ideal in L.X/, then
K? \GLI.X/D ¹Idº, and so the group

®
�IdCA 2GL.X/

ˇ̌
� 2K n ¹0º and A 2 I

¯

of nonzero scalar multiples of elements of GLI.X/ splits as a direct product

K? �GLI.X/:

Moreover, since then J D I is a norm-closed proper ideal, both K? and GLJ.X/ are
norm closed and so the decompositions K?�GLJ.X/, and hence also K?�GLI.X/,
are topological direct products with respect to the norm topology. In particular, this
applies to the ideals F and AF . So whereas our ultimate interest lies in, for example,
the group K? �GLf .X/, in many situations this splitting allows us to focus on only
the nontrivial part, namely, GLf .X/.
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PROPOSITION 3.5
Suppose that X is a Banach space with separable dual and that � W G ! K? �

GLin.X/ is a bounded, weakly continuous representation of a Polish group G. Then
� is norm continuous.

It follows that if G �K? � GLin.X/ is a bounded subgroup, strongly closed in
GL.X/, then the strong operator and norm topologies coincide on G.

Proof
Composing � with the coordinate projection from K? � GLin.X/ onto GLin.X/
and using Theorem 3.4, we see that the representation has image in K? �GLaf .X/.
We remark that, since X� is separable, the ideal F .X/ of finite-rank operators on

X is separable for the norm topology, whence also AF .X/ D F .X/
k�k

and K? �

GLaf .X/ are norm separable. Moreover, by Proposition 3.1, � is strongly continu-
ous, whereby, for every � > 0 and x 2X , the set

U�;x D
®
g 2G

ˇ̌ ���.g/x � x��< �¯

is open in G. Thus, if ¹xnºn2N �X is dense in the unit ball of X , we see that
®
g 2G

ˇ̌ ���.g/� Id
��< �¯D

[
m�1

\
n2N

U��1=m;xn

is Borel in G. So � is a Borel-measurable homomorphism from a Polish group to a
norm-separable topological group and therefore is norm continuous by Pettis’s theo-
rem (see [41, (9.10)]).

If now instead G � K? � GLin.X/ is a bounded subgroup, strongly closed in
GL.X/, then G is Polish in the strong operator topology and so the tautological rep-
resentation on X is norm continuous, implying that every norm-open set in G is also
strongly open. It follows that the two topologies coincide on G.

Observe that if a space X has an unconditional basis and G is the bounded group
of isomorphisms acting by change of signs of the coordinates on the basis, then G
is an uncountable discrete group in the norm topology and is just the Cantor groupQ
n2NZ2 in the strong operator topology. So there is no hope of extending Propo-

sition 3.5 to arbitrary strongly closed bounded subgroups G � GL.X/ when X has
an unconditional basis, and, in many cases, to ensure the norm separability of any
bounded G �GL.X/, we even have to assume that X does not contain any uncondi-
tional basic sequences.

3.3. Near triviality
As a corollary of Proposition 3.5 and Theorem 3.3, one sees that if X is a Banach
space with separable dual and G �GLin.X/ is compact in the strong operator topol-
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ogy, then G is a compact Lie group. However, we can prove an even stronger result
that also allows us to bypass the result of Gleason–Montgomery–Zippin–Yamabe.
The central notion here is that of near triviality.

Definition 3.6
Let X be a Banach space, and let G � GL.X/ be a subgroup. We say that G acts
nearly trivially on X if X admits a decomposition into G-invariant subspaces,

X DH ˚F;

such that F is finite-dimensional and for all T 2G there exists �T such that T jH D
�T IdH .

We remark that a subgroup G � GL.X/ acts nearly trivially on X if and only if
the subgroup c.G/ of GL. OX/ acts nearly trivially on the complexification OX .

Note that, when G acts nearly trivially on X , the strong operator topology on
G is just the topology of pointwise convergence on F 0 D F ˚ L, where L is an
arbitrary one-dimensional subspace of H (or L D ¹0º if H is trivial), and so T 2
G 7! T jF 0 2 GL.F 0/ is a topological group embedding. Since any strongly closed
bounded subgroup of GL.F 0/ is a compact Lie group, it follows that if G is strongly
closed and bounded in GL.X/, then G is also a compact Lie group.

We also remark that in this case one has im.T � �T Id/� F for all T 2G. But,
in fact, this observation leads to the following equivalent characterization of near
triviality for bounded subgroups, which, for simplicity, we only state for subgroups
of GLf .X/.

LEMMA 3.7
Let X be a Banach space, and let G � GLf .X/ be a bounded subgroup. Then the
following are equivalent:
(1) G acts nearly trivially on X .
(2) There is a finite-dimensional F �X such that im.T � Id/� F for all T 2G.

Moreover, in this case,

X D
\
T2G

ker.T � Id/˚ span
�[
T2G

im.T � Id/
�

is a decomposition witnessing near triviality.

Proof
One direction has already been noted, so suppose instead that (2) holds, and let F �X
be the finite-dimensional subspace F D span.

S
T2G im.T � Id//. Then, for all x 2X
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and T 2G, we have T x D x C f for some f 2 F with kf k � kT � Idk � kxk. So,
for any x 2 X , G � x � x C .2kGkkxk/BF , showing that the orbit of x is relatively
compact. Moreover, F is G-invariant, and if Y �X is any G-invariant subspace with
Y \F D ¹0º, then T x D x for all x 2 Y and T 2G.

Since G is almost periodic, by Proposition 3.2, X is the closed linear span of its
finite-dimensional irreducible subspaces. Therefore, as Y �

T
T2G ker.T � Id/ for

any irreducible Y �X with Y \ F D ¹0º, we see that X D F ˚
T
T2G ker.T � Id/,

which finishes the proof.

As easy applications, we have the following lemmas.

LEMMA 3.8
Suppose that X is a Banach space and that G � GLf .X/ is a finitely generated
bounded subgroup. Then G acts nearly trivially on X .

Proof
Let G D hT1; : : : ; Tni, and put F D im.T1 � Id/C � � � C im.Tn � Id/, which is finite-
dimensional. Note now that T �1i � Id D .Ti � Id/.�T �1i /, and so im.T �1i � Id/D
im.Ti � Id/� F . Moreover, for T;S 2GL.X/,

TS � IdD .S � Id/C .T � Id/S;

and so, if im.T � Id/� F and im.S � Id/� F , then also im.TS � Id/� F . It thus
follows that im.T � Id/� F for all T 2G, whence Lemma 3.7 applies.

LEMMA 3.9
Suppose that X is a Banach space and that T 2GLf .X/ is an isometry. Then

X D ker.T � Id/˚ im.T � Id/:

Moreover, if X is complex, there are eigenvectors xi such that im.T � Id/ D Œx1;
: : : ; xn�.

Proof
As in Lemma 3.8, we see that im.T n � Id/ � im.T � Id/ for all n 2 Z. The result
now follows from Lemma 3.7. The “moreover” part follows from the fact that any
isometry of a finite-dimensional complex space can be diagonalized.

PROPOSITION 3.10
Suppose that X is a separable Banach space and that G � GLin.X/ is a norm-
compact subgroup of GL.X/. Then G acts nearly trivially on X .
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Proof
There are several ways of proving this, for example, one based on the structure theory
for norm-continuous representations (see [62]) of compact groups. But we will give a
simple direct argument as follows.

Since G is norm compact, it is almost periodic, so by Proposition 3.2, X is the
closed linear span of its finite-dimensional G-invariant subspaces. So, as X is sepa-
rable, by taking finite sums of these we can find an increasing sequence F0 � F1 �
F2 � � � � �X of finite-dimensional G-invariant subspaces such that X D

S
n�0Fn.

Let A � L.X/ be the subalgebra generated by G, and define, for every n, the
unital algebra homomorphism �n W A!L.X=Fn/ by

�n.A/.xCFn/DAxCFn:

Note that k�n.A/k � k�m.A/k � kAk for all n�m.
We claim that there is an n such that �n.T � Id/D 0 for all T 2G. To see this,

assume the contrary, and note that, by Theorem 3.3, for every n there is some Tn 2G
such that k�n.Tn � Id/k D k�n.Tn/� Idk �

p
2. So for m� n, we have

���m.Tn � Id/
��� ���n.Tn � Id/

���p2:

Moreover, by passing to a subsequence, we can suppose that the Tn converge in norm
to some T 2G, whence k�m.T � Id/k �

p
2 for all m.

Now, by Theorem 3.4, G �GLaf .X/, so AD T � Id 2AF . Since A is a norm
limit of finite-rank operators, there is a finite-dimensional subspace F �X such that
d.Ax;F / < 1 for all x 2X , kxk � 1. Using that the Fn are increasing and that X DS
n�0Fn, we see that there is an n such that

p
2�

���n.A/
��D sup

kxkD1

d.Ax;Fn/� sup
kxkD1

d.Ax;F /C 1=3� 4=3;

which is absurd. So fix an n such that �n.T � Id/D 0 and thus im.T � Id/� Fn for
all T 2G. The result now follows from Lemma 3.7.

THEOREM 3.11
Suppose that X is a Banach space with separable dual and that G � GLin.X/ is an
almost periodic subgroup, strongly closed in GL.X/. Then G acts nearly trivially on
X and hence is a compact Lie group.

Proof
By Proposition 3.2, G DG

SOT
is compact in the strong operator topology. Since X�

is separable, by Proposition 3.5 the norm and strong operator topologies coincide on
G. Therefore, Proposition 3.10 applies.
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Recall that by Theorem 3.4, any isometry, which is an inessential perturbation of
Id, must belong to Isomaf .X/. The next lemma shows that under additional condi-
tions one may replace Isomaf .X/ by Isomf .X/.

LEMMA 3.12
Let X be a complex Banach space, and let T 2 Isomaf .X/. If T has finite spectrum,
then T 2 Isomf .X/.

Proof
Write �.T / D ¹1;�1; : : : ; �nº, and let P be the spectral projection of T corres-
ponding to the spectral set ¹1º. Then T .PX/ D PX , �.T jPX / D ¹1º, and
supn2Zk.T jPX /

nk <1, so, by the result of Gelfand, T jPX D Id. By the same rea-
soning T jXi D �i IdXi , where Xi is the range of the spectral projection associated to
¹�iº for i D 1; : : : ; n. Since T is an almost finite-rank perturbation of the identity, all
elements of �.T / different from 1 have finite multiplicity and therefore PX has finite
codimension.

As in the case of GLf .X/, it will often be enough to study the group Isomf .X/,
although our interest will really be in the subgroup ¹�1; 1º � Isomf .X/ of Isom.X/
(resp., T� Isomf .X/ in the complex case). The same holds in relation to Isomaf .X/

and ¹�1; 1º � Isomaf .X/ (resp., T� Isomaf .X/ in the complex case).

4. Decompositions of separable reflexive spaces by isometries

4.1. Duality mappings
Let X be a Banach space. Recall that a support functional for x 2 SX is a functional
� in SX� such that �.x/D 1. Support functionals always exist by the Hahn–Banach
theorem. We denote by Jx the set of support functionals of x 2 SX and extend J
to all of X by positive homogeneity; that is, J.tx/D tJ x for all t � 0 and x 2 SX .
Also, for Y �X , J ŒY � denotes the set of support functionals for x 2 Y .

The following lemma finds its roots in Lindenstrauss’s early work (see [43] or
[21, Chapter VI]).

LEMMA 4.1
Let X be a Banach space, and let Y be a closed linear subspace of X . Then the
following hold:
(a) Y and J ŒY �? form a direct sum in X , and the corresponding projection from

the subspace
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Y ˚ J ŒY �?

onto Y has norm at most 1.
(b) If Y is reflexive and J ŒY � is a closed linear subspace of X�, then

X� D J ŒY �˚ Y ?

and the corresponding projection from X� onto J ŒY � has norm at most 1.

Proof
Suppose that y 2 SY , z 2 J ŒY �?, and let � 2 Jy. Then

ky C zk � �.y C z/D �.y/D 1D kyk;

which implies (a). A similar argument shows that if J ŒY � is a closed linear subspace
of X�, then J ŒY � and Y ? form a direct sum in X�, and the corresponding projection
from the subspace

J ŒY �˚ Y ?

onto J ŒY � has norm at most 1.
For (b), assume that Y is reflexive and that J ŒY � is a closed linear subspace of

X�. To see that X� D J ŒY �˚ Y ?, fix  2 X�, and let � 2 X� be a Hahn–Banach
extension of  jY to all of X with k�k D k jY k. Then  jY D �jY , whence  � � 2
Y ? and k�k D k jY k D k�jY k. On the other hand, since k�k D k�jY k and Y is
reflexive, �jY and thus � attain their norm on Y , which means that � D Jy for some
y 2 Y , that is, � 2 J ŒY �. So  D � C . � �/ 2 J ŒY �˚ Y ?.

We refer the reader to [21] for more general results in this direction (see, e.g., [21,
Lemma 2.4, p. 239] for information about the class of weakly countably determined
spaces).

Recall that a norm k � k on a Banach space X is Gâteaux differentiable if, for all
x 2 SX and h 2X ,

lim
t!0;t2R

kxC thk � kxk

t

exists, in which case it is a continuous linear function in h. We note that this only
depends on the R-linear structure of X . When the norm on X is Gâteaux differen-
tiable, the support functional is unique for all x 2 SX . This is proved in [21] in the
real case and is also true in the complex case, as observed in Section 2.2. So, provided
that the norm is Gâteaux differentiable, Jx is a singleton for all x 2 SX and we can
therefore see J as a map from X into X�.
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Therefore, assuming that the norms on X and X� are both Gâteaux differen-
tiable, the duality map is defined from X to X� and from X� to X��, where to avoid
confusion we denote the second by J� W X�! X��. The following two lemmas are
now almost immediate from the definition of J and J�.

LEMMA 4.2
Let X be a reflexive space with a Gâteaux differentiable norm, whose dual norm is
Gâteaux differentiable. Then J W X!X� is a bijection with inverse J� W X�!X .

LEMMA 4.3
Let X have a Gâteaux differentiable norm, and let T be an isometry of X . Then the
maps JT �1 and T �J coincide on X .

Proof
For any x 2 SX , T �.J x/.T �1x/D 1, which shows that J.T �1x/D T �.J x/. This
extends to all of X by positive homogeneity.

4.2. LUR renormings and isometries
Recall that a norm on a Banach space X is uniformly convex if

8� > 0 9ı > 0 8x;y 2 SX
�
kx � yk � �)kxC yk � 2� ı

�
:

A weaker yet important notion in renorming theory is that of a locally uniformly
rotund (LUR) norm:

8x0 2 SX 8� > 0 9ı > 0 8x 2 SX
�
kx � x0k � �)kxC x0k � 2� ı

�
:

(For other characterizations of LUR norms, we refer to [21].) Any LUR norm is
strictly convex, meaning that the associated closed unit ball is strictly convex. Note
that this definition does not depend on X being seen as real or complex.

PROPOSITION 4.4
Assume that X is a Banach space whose dual norm is LUR. Then the duality mapping
J W X!X� is well defined and norm continuous.

Therefore, if X is reflexive and both the norm and the dual norm are LUR, then
J W X!X� is a norm homeomorphism with inverse J� W X�!X .

Proof
It follows from the LUR property in X� that the norm on X is Gâteaux differentiable
(see [21]) and that therefore J is well defined. Now given x0 2 SX and � > 0, let
ı > 0 be associated to � by the LUR property at �0 D Jx0. If for some x 2 SX ,



1794 FERENCZI and ROSENDAL

kJx � Jx0k � �, then kJxC Jx0k � 2� ı and therefore

ˇ̌
1� .J x/.x0/

ˇ̌
D
ˇ̌
2� .J xC Jx0/.x0/

ˇ̌
� 2� kJxC Jx0k � ı:

Thus

kx � x0k �
ˇ̌
.J x/.x � x0/

ˇ̌
D
ˇ̌
1� .J x/.x0/

ˇ̌
� ı:

This proves that J is continuous as a map from SX to SX� and therefore from X

to X�.

For a general characterization of LUR norms with duality mappings in possibly
nonreflexive spaces, we refer the reader to the paper of Debs, Godefroy, and Saint-
Raymond [20].

While not all real separable spaces admit an equivalent uniformly convex norm,
it is a well-known result of renorming theory, due to Kadec, that they admit an equiva-
lent LUR norm (see [21, Chapter II]). However, we are interested in LUR renormings
which, in some sense, keep track of the original group of isometries on the space. The
next proposition is the first of a series of results in that direction.

For expositional ease, if k � k is a norm on a Banach space X , we will denote the
induced norm on the dual space X� by k � k�.

PROPOSITION 4.5
Let X be a Banach space, and let G � GL.X/ be a bounded subgroup. Assume that
X admits G-invariant equivalent norms k � k0 and k � k1 such that k � k0 and k � k�1 are
LUR. Then X admits a G-invariant equivalent norm k � k2 such that both k � k2 and
k � k�2 are LUR.

Moreover, for any G-invariant equivalent norm k � k on X and � > 0, one can
choose k � k2 to be .1C �/-equivalent to k � k.

Proof
The proof proceeds along the lines of [21, Section II.4], but we include some details
for the convenience of the reader.

Let N denote the space of G-invariant equivalent norms on X equipped with the
complete metric

d
�
k � k;kj � jk

�
D sup
x¤0

ˇ̌
ˇ̌log
kxk

kjxjk

ˇ̌
ˇ̌:

Let also L�N denote the subset of all norms that are LUR. We first show that L is
comeager in N .
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Note first that k � k0 2L, and define for all k � 1 the open set

Lk D
°
kj � jk 2N

ˇ̌
ˇ 9k � k 2N 9n� kd

�
kj � jk;

�
k � k2C

1

n
k � k20

�1=2�
<
1

n2

±
:

Now, if k � k 2N , then for all n � k, .k � k2 C 1
n
k � k20/

1=2 2Lk , while on the other
hand .k �k2C 1

n
k �k20/

1=2 �!
n!1

k �k, which shows that k �k 2Lk for every k � 1. Thus,

Lk is dense open for every k and hence
T
k�1Lk is comeager in N and, as shown

in [21], is a subset of L. So L is comeager in N .
Similarly, one shows, using that k � k�1 is LUR, that the set

MD
®
k � k 2N

ˇ̌
k � k� is LUR

¯

is comeager in N . It thus suffices to choose k � k2 in the comeager and thus dense
intersection L\M.

The following result was proved by Lancien (in [42], see Theorem 2.1 and
Remark 1 on p. 639, and Theorem 2.3 and the observation and remark on p. 640).

THEOREM 4.6 (G. Lancien)
Let .X;k � k/ be a separable Banach space, and set G D Isom.X;k � k/. Then the
following hold.
(a) If X has the Radon–Nikodym property, then X admits an equivalent

G-invariant LUR norm.
(b) IfX� is separable, thenX admits an equivalentG-invariant norm whose dual

norm is LUR.

We should note here that the result of Lancien is proved and stated for real spaces,
but also holds for complex spaces. Indeed, suppose that X is a complex space, and let
XR denote the space X seen as a Banach space over the real field. Any equivalent real
norm onXR, which is Isom.XR;k �k/-invariant, must be invariant under all isometries
of the form �Id for � 2 T and hence is actually a complex norm that is Isom.X;k � k/-
invariant. Thus, in order to obtain Lancien’s result for a complex spaceX , and modulo
the observations in Section 2.2, it suffices to simply apply it to XR.

Combining Proposition 4.5 and Theorem 4.6, plus the fact that any bounded sub-
group of GL.X/ is a group of isometries in some equivalent norm, we obtain the
following result.

THEOREM 4.7
Let X be a Banach space with the Radon–Nikodym property and separable dual, and
let G � GL.X/ be a bounded subgroup. Then X admits an equivalent G-invariant
LUR norm whose dual norm is also LUR.
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Recall that a Banach space X is said to be super-reflexive if whenever Y is a
Banach space crudely finitely representable inX (i.e., for some constantK , any finite-
dimensional subspace of Y embeds with constantK in X ), then Y is reflexive. More-
over, .X;k � k/ is super-reflexive if and only if it admits a uniformly convex renorming
.X;kj � jk/, and, in this case (see, e.g., [6, Proposition 2.3]), if G D Isom.X;k � k/, then

kjxjk0 D sup
T2G

kjT xjk

is a G-invariant uniformly convex renorming of X . This strengthens Theorem 4.7 in
the case of super-reflexive spaces.

Since any reflexive space has the RNP (see [10]), the conclusion of Theorem 4.7
holds, in particular, for any separable reflexive space. As a first consequence of this,
we have the following lemma (the existence of the fixed point can alternatively be
obtained directly via Ryll-Nardzewski’s fixed-point theorem [59]; see also [26, The-
orem 12.22]).

LEMMA 4.8
Let X be a separable reflexive space, and let G be a bounded subgroup of GL.X/.
Then, for each x 2X , conv.G � x/ contains a unique G-fixed point.

Proof
By renorming using Theorem 4.7, we may assume that G is a group of isometries
and that the norms on X and X� are LUR. Fix x 2 X , and let C D conv.G � x/.
By reflexivity, C is weakly compact and thus contains a point x0 of minimal norm.
Furthermore, by strict convexity, x0 is unique and therefore fixed by G.

Assume that x1 is another G-fixed point in C , and let � 2X�. As above, we may
find a unique functional �0 of minimal norm in conv.G � �/, which is therefore fixed
byG. It follows that �0 is constant onG �x and thus also on C D conv.G �x/, whence
�0.x1/D �0.x0/D �0.x/ and �0.x1 � x0/D 0. Now, since x1 � x0 is G-fixed, seen
as a functional on X�, it must be constant on conv.G � �/ and so �.x1 � x0/D 0. As
� was arbitrary, this proves that x1 D x0.

4.3. Jacobs–de Leeuw–Glicksberg and Alaoglu–Birkhoff decompositions
If T is an operator on a Banach space X , we define the T -invariant (resp.,
T �-invariant) subspaces:
� HT D ker.T � Id/;
� HT � D ker.T � � Id/;
� FT D im.T � Id/;
� FT � D im.T � � Id/.
Then, as is easy to verify, HT � D .FT /?, HT D .FT �/? and FT D .HT �/?.



ON ISOMETRY GROUPS AND MAXIMAL SYMMETRY 1797

Also, if G � GL.X/ is a bounded group of automorphisms of X , we define the
following closed G-invariant subspaces of X and X�:
� HG D ¹x 2X j x is fixed by Gº;
� HG� D ¹� 2X

� j � is fixed by Gº;
� KG D ¹x 2X j x is almost periodicº;
� KG� D ¹� 2X

� j � is almost periodicº:
(Note that HG �KG and HG� �KG� .) When G is generated by a single element,
that is, G D hT i, obviously HhT i, HhT i� coincide with HT , HT � .

Jacobs [38], and later de Leeuw and Glicksberg [19], studied canonical decom-
positions induced by weakly almost periodic semigroups S�L.X/ of operators on a
Banach spaceX . As part of the subsequent development of their theory, the following
result has been proved (see [11, Corollary 6.2.19] or Troallic [66] along with [19, The-
orem 4.11], for proofs based on the Ryll-Nardzewski fixed-point theorem, resp., on
Namioka’s joint continuity theorem). IfX is a Banach space andG is a weakly almost
periodic subgroup of L.X/, that is, every G-orbit is relatively weakly compact, then
X DKG ˚Z, where Z is a canonical complement consisting of the so-called furtive
vectors, that is, vectors x 2 X so that 0 2 G � x

w
. We note that, whereas the set of

furtive vectors does not a priori form a linear subspace of X , it is a closed linear sub-
space in the above case. Observe also that if X� is separable, then x 2X is furtive if
and only if there is a sequence of Tn 2G so that Tnx�!

w
0.

We now instead give a new proof of this decomposition for separable reflexive
X , using only the renorming given by Theorem 4.7 and the properties of the duality
mapping. In fact, our proof identifies further decompositions of X than those given
by the approach of de Leeuw and Glicksberg and also equates Z with .KG�/?.

LEMMA 4.9
Let X be a Banach space, and let G � GL.X/ be a bounded subgroup. Then the
following implications hold:

x is furtive ) x 2 .KG�/?

+ +

0 2 conv.G � x/ ) x 2 .HG�/?

Proof
If x 2X is furtive and � 2KG� , we claim that �.x/D 0. To see this, assume without
loss of generality that G is a group of isometries, fix � > 0, and pick an �-dense
subset  1; : : : ; k of G � �. Then, since x is furtive, there is some T 2 G such that
jT � i .x/j D j i .T x/j< � for every i D 1; : : : ; k. Picking i such that k��T � ik D
k.T �1/��� ik< �, we see that j�.x/j � k��T � ikkxkCjT � i .x/j< �kxkC�.
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So, as � > 0 is arbitrary, it follows that �.x/D 0. In other words, any furtive vector
belongs to .KG�/?.

Note also that if � 2HG� , T1; : : : ; Tn 2G and �i � 0 are such that
Pn
iD1 �i D 1,

then, for any x 2X ,

�
� nX
iD1

�iTix
�
D

nX
iD1

�iT
�
i �.x/D

nX
iD1

�i�.x/D �.x/:

Hence, if 0 2 conv.G � x/ and � 2HG� , then �.x/D 0, showing the second implica-
tion. Finally, the vertical implications are trivial.

It turns out that if X is separable reflexive, then the horizontal implications
reverse, which allows us to identify the Jacobs–de Leeuw–Glicksberg decomposi-
tion with a decomposition provided by the duality mapping. In this setting, we also
obtain the decomposition originating in the work of Alaoglu and Birkhoff [1].

THEOREM 4.10
Let X be a separable reflexive space, and suppose that G � GL.X/ is a bounded
subgroup. Then X admits the following G-invariant decompositions.
(a) (Alaoglu–Birkhoff-type decomposition)

X DHG ˚ .HG�/?;

where, if S �G generates a dense subgroup of G, then

.HG�/? D span
�[
T2S

FT

�
D
®
x 2X

ˇ̌
0 2 conv.G � x/

¯
:

Moreover, the projection P W X!HG is given by

Px D the unique point in HG \ conv.G � x/:

(b) (Jacobs–de Leeuw–Glicksberg-type decomposition)

X DKG ˚ .KG�/?;

where

.KG�/? D ¹x 2X j x is furtiveº D ¹x 2X j 9Tn 2GTnx�!
w
0º:

Moreover, the projections onto each summand have norm bounded by 2kGk2 (or
kGk2 when the summand is HG or KG ), and either G is almost periodic, that is,
X DKG , or the subspace .KG�/? is infinite-dimensional.
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In particular, for any isometry T of X ,

X DHT ˚FT :

Proof
Renorming X by kjxjk D supT2G kT xk, we can suppose that G is a group of isome-
tries. Moreover, by a further renorming using Theorem 4.7, we can suppose that both
the norm and its dual are LUR. Furthermore, using the quantitative estimate of Propo-
sition 4.5, and fixing � > 0, we can ensure that the resulting norm onX is .1C�/kGk-
equivalent to the original norm.

Note then that, by Propositions 4.4 and 4.3, J W X ! X� is a homeomorphism
satisfying JT �1 D T �J , whence J ŒHG � �HG� and J ŒKG � �KG� . Similarly, the
inverse J� satisfies J�ŒHG� ��HG and J�ŒKG� ��KG , whence J ŒHG �DHG� and
J ŒKG �DKG� . It follows from Lemma 4.1(b) that

X DHG ˚ .HG�/? DKG ˚ .KG�/?;

where the corresponding projections have norm at most 2, or 1 for the projections
ontoHG andKG . SinceHG �KG andHG� �KG� , we see that the decompositions
refine to X DHG ˚ ..HG�/? \KG/˚ .KG�/?. Since � was arbitrary, the estimate
on the norms of the projections in the original space follows immediately.

Note that, since no nonzero G-orbit on .KG�/? is relatively compact, the latter
space must either be infinite-dimensional or reduce to ¹0º.

Moreover, if S �G generates a dense subgroup of G, then

HG� D
\
T2S

HT � D
\
T2S

.FT /
? D

�
span

�[
T2S

FT

��?

and so .HG�/? D span.
S
T2S FT /.

Now, to see that .KG�/? is the set Z of furtive vectors, note that, by the above-
mentioned Corollary 6.2.19 in [11], Z is a closed linear subspace such that X D
KG ˚Z. As also Z � .KG�/?, we have Z D .KG�/?.

Observe now that for any z 2 .HG�/?, we have conv.G � z/� .HG�/?, and so
the unique point in HG \ conv.G � z/, that exists by Lemma 4.8, must be zero. Thus,
if y 2 HG and z 2 .HG�/?, then for any � > 0 there are Ti 2 G and �i � 1 withPn
iD1 �i D 1 and

���y �
nX
iD1

�iTi .y C z/
���D

���y �
� nX
iD1

�iy C

nX
iD1

�iTiz
����D

���
nX
iD1

�iTiz
���< �:

Since � > 0 is arbitrary, this shows that the projection of x D yC z onto HG , namely
y, belongs to HG \ conv.G � x/, which, by Lemma 4.8, implies that the projection P
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of X onto HG is given by ¹Pxº DHG \ conv.G �x/ and hence that .HG�/? D ¹x 2
X j 0 2 conv.G � x/º.

The above approach also provides other decompositions not identified in the
Jacobs–de Leeuw–Glicksberg theory. Here, if G is a bounded subgroup of GL.X/
and S �G is a symmetric subset (thus not necessarily closed under composition), we
let
� KS D ¹x 2X j S � x is totally bounded in Xº,
� KS� D ¹� 2X

� j S � � is totally bounded in X�º,
and we note that this agrees with the previous definitions in the case S DG. A simple
argument shows that KS and KS� are closed linear subspaces of X and X�, respec-
tively, though not necessarily G-invariant. Similarly, a vector x 2 X is a said to be
S -furtive if 0 2 S � x

w
. As in Lemma 4.9, we see that every S -furtive vector belongs

to .KS�/?. Moreover, the proof of Theorem 4.10 easily adapts to provide the follow-
ing.

PROPOSITION 4.11
LetX be a separable reflexive Banach space, letG �GL.X/ be a bounded subgroup,
and let S �G be a symmetric subset. Then

X DKS ˚ .KS�/?;

where the corresponding projection onto KS has norm at most kGk2.

4.4. Finite-dimensional decompositions
Theorem 4.10 has several applications in ergodic theory to the decompositions of
functions over dynamical systems. We will now see how it can also provide the
existence of finite-dimensional decompositions and even Schauder bases for Banach
spaces.

For the following lemma, recall that an isometry T of a Banach space X is finite-
dimensional if it is a finite-rank perturbation of the identity on X . Recall also that
a Schauder basis is always assumed to be infinite and thus it must be a basis for an
infinite-dimensional space. Abusing terminology, we say that a Banach space Y has
a possibly finite Schauder basis if either dimY <1 or otherwise dimY D1 and Y
has a Schauder basis.

LEMMA 4.12
Let X be a separable reflexive Banach space, and let T1; T2; : : : be a sequence
of finite-dimensional isometries of X . Then the complemented subspace
span.

S
n�1FTn/ admits a finite-dimensional decomposition with constant at most 2.
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If, moreover, the dimensions of FTn are uniformly bounded, then span.
S
n�1FTn/ has

a (possibly finite) Schauder basis.

Proof
By Theorem 4.10, we see that, for all n� 1,

X D .FT1 C � � � CFTn/˚HhT1;:::;Tni;

where the corresponding projections Pn of X onto the summands .FT1 C � � � C FTn/
have norm uniformly bounded by 2. Similarly,

X D span
�[
n�1

FTn

�
˚HhT1;T2;:::i:

Also, for n�m, we have .FT1 C � � � C FTn/� .FT1 C � � � C FTm/ and HhT1;:::;Tni �
HhT1;:::;Tmi, from which it follows that PnPm D PmPn D Pn. Clearly, kPnx �
xk �!

n!1
0 for all x 2 span.

S
n�1FTn/ and so, as the Pn are uniformly bounded, this

holds for all x 2 span.
S
n�1FTn/. By [44, p. 47], it follows that the finite-dimensional

subspaces En D .Pn � Pn�1/ŒX� form a finite-dimensional decomposition of the
complemented closed subspace span.

S
n�1FTn/.

If the dimensions of the FTn are uniformly bounded, then the dimensions of
the En are also uniformly bounded. In this case, we can further refine the decom-
position to a Schauder basis for span.

S
n�1FTn/ provided of course that the latter is

infinite-dimensional.

With Lemma 4.12 in hand, we can now prove several results on finite-dimensional
decompositions.

THEOREM 4.13
Let X be a separable reflexive Banach space, and let G �GL.X/ be a bounded sub-
group containing a nontrivial finite-rank perturbation of the identity. Then X admits
a G-invariant decomposition X D Y ˚Z with Y ¤ ¹0º and where Y has a (possibly
finite) Schauder basis.

Proof
Fix some Id¤ T 2G such that FT D im.T � Id/ is a finite-dimensional subspace of
X , and renorm so that G is a group of isometries. Since G is separable in the strong
operator topology, we can let R1;R2;R3; : : : list the elements of a dense subgroup
� of G and set Tn D RnTR�1n , whereby FTn D FRnTR�1n D RnŒFT � and HTn D
RnŒHT �.
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Now, by Theorem 4.10,

X D span
�[
n�1

FTn

�
˚HhT1;T2;:::i:

Moreover, as � D ¹R1;R2; : : :º, we see that both summands

Y D span
�[
n�1

FTn

�
D span

�[
n�1

RnŒFT �
�
¤ ¹0º

and

Z DHhT1;T2;:::i D
\
n�1

RnŒHT �

are �-invariant and therefore also G-invariant.
Finally, applying Lemma 4.12 to the sequence Tn, we see that Y has a (possibly

finite) Schauder basis.

Note that if in Theorem 4.13 we have KG D ¹0º, that is, no nonzero orbit is
totally bounded, then there are no finite-dimensional G-invariant subspaces of X and
so dimY D1, whereby Y has a Schauder basis. Observe also that the projection
onto Z has norm at most kGk2 and that FT � Y , where T 2 G is the given finite-
rank perturbation of the identity.

COROLLARY 4.14
Let X be a separable reflexive Banach space, and let G � GL.X/ be a bounded
subgroup containing a nontrivial finite-rank perturbation of the identity.
� If there are no nonzero totally bounded G-orbits, then X admits a comple-

mented G-invariant subspace with a Schauder basis.
� If X admits no nontrivial G-invariant decompositions, then X itself has a

Schauder basis.

The first known example of a (separable) space such that no complemented sub-
space has a basis or even a finite-dimensional decomposition was given in 1983 by
Pisier’s famous counterexample to a conjecture of Grothendieck (see [53]). More
recently, Allexandrov, Kutzarova, and Plichko [2] observed that the Gowers–Maurey
constructions of hereditarily indecomposable spaces (see [35]) implied the existence
of separable reflexive spaces without any Schauder decomposition.

COROLLARY 4.15
Let X be a separable reflexive Banach space, and let G � GLf .X/ be a bounded
subgroup, strongly closed in GL.X/. Then either G acts nearly trivially on X or X
has a complemented subspace with a Schauder basis.
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Proof
By Theorem 4.10, X DKG ˚ .KG�/? and .KG�/? is either infinite-dimensional or
X DKG . If X DKG , then G is almost periodic and hence acts nearly trivially on X
by Theorem 3.11.

On the other hand, if .KG�/? is infinite-dimensional, then

Gj.KG� /? D ¹T j.KG� /? j T 2Gº

is a bounded subgroup of GLf ..KG�/?/ having no nonzero relatively compact orbits.
By Theorem 4.13, .KG�/? and thus also X has a complemented subspace with a
Schauder basis.

THEOREM 4.16
Let X be a separable reflexive Banach space, let G � GLf .X/ be a bounded sub-
group, and let X DHG˚ .HG�/? be the corresponding Alaoglu–Birkhoff decompo-
sition. Then .HG�/? is finite-dimensional or admits a finite-dimensional decomposi-
tion.

Proof
Renorm so that G is a group of isometries, and let T1; T2; : : : list the elements of a
dense subgroup of G. Then .HG�/? D span.

S
n�1FTn/ is complemented in X and

admits a finite-dimensional decomposition.

THEOREM 4.17
Let X be a separable reflexive Banach space, let G � GLf .X/ be a bounded sub-
group, and let X DHG˚ .HG�/? be the corresponding Alaoglu–Birkhoff decompo-
sition. Then .HG�/? admits a G-invariant Schauder decomposition

.HG�/? D Y1˚ Y2˚ � � �

(possibly with finitely many summands) such that each Yn has a (possibly finite)
Schauder basis.

Proof
By renorming, we can suppose that G is a group of isometries of X . Let also T1; T2;
: : : list a dense subset of G.

We now apply Theorem 4.13 (and the comments following it) first to the
G-invariant subspace .HG�/? and the isometry T1 to obtain a G-invariant decom-
position,

.HG�/? D Y1˚Z1;
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where the projection onto Z1 has norm 1, FT1 � Y1, and Y1 has a (possibly finite)
Schauder basis.

Let now G1 D ¹T jZ1 j T 2 Gº denote the restriction of G to Z1, and note that
G1 has no nonzero fixed points on Z1. We can therefore apply Theorem 4.13 to
G1 �GLf .Z1/, Z1 and the first nontrivial isometry T in the list T2jZ1 ; T3jZ1 ; : : : to
obtain a G1-invariant, and thus also G-invariant, decomposition

Z1 D Y2˚Z2;

where the projection of Z1 onto Z2 has norm 1, FT � Y2, and Y2 has a (possibly
finite) Schauder basis.

Continuing in this manner, we construct a (possibly finite) list of G-invariant
closed subspaces Y1; Y2; : : : and Z1;Z2; : : : such that .HG�/? D Y1 ˚ Z1,
Zn D YnC1 ˚ ZnC1 and the projection of .HG�/? onto Zn has norm 1 for all
n. Moreover, by construction, we have FTn � Y1 ˚ � � � ˚ Yn, whereby .HG�/? D
span.

S
n�1FTn/ � Y1 ˚ Y2 ˚ � � � . It follows that .HG�/? admits the G-invariant

Schauder decomposition

.HG�/? D Y1˚ Y2˚ � � � ;

where the norms of the projections onto the initial segments are bounded by 2.

5. Groups of finite-dimensional isometries

5.1. Norm-closed subgroups of GLf .X/
By Theorem 4.10, the study of the isometry group of a separable reflexive Banach
space essentially reduces to the study of two separate cases, namely, when all orbits
are totally bounded and when no orbit is totally bounded. We now treat the second
case.

LEMMA 5.1
Suppose that G is a group acting by isometries on a complete metric space M . Then
the following conditions are equivalent:
(1) No orbit is totally bounded.
(2) For every compact C �M , there is a g 2G such that gŒC �\C D;.
(3) For any compact C �M and g 2G there are f1; f2 2G such that gD f1f2

and fi ŒC �\C D;.

Proof
That (3) implies (1) is trivial. For the implication from (1) to (2), we will use the
following well-known fact from group theory.
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CLAIM 5.2
Suppose that F1E1[� � �[FnEn is a covering of a groupG, where Ei ;Fi are subsets
of G with Fi finite. Then there is a finite set F �G and an i such that G D FEiE�1i .

Proof
The proof is by induction on n, the case n D 1 being trivial. So suppose that the
result holds for n� 1, and let G D F1E1 [ � � � [ FnEn be a covering. Then, if G ¤
F1E1E

�1
1 , pick g 2G nF1E1E�11 , whereby gE1\F1E1 D;. It follows that gE1 �

F2E2 [ � � � [FnEn and hence that

F1E1 D F1g
�1 � gE1 � F1g

�1F2E2 [ � � � [F1g
�1FnEn:

Thus,

G D .F1g
�1F2 [F2/E2 [ � � � [ .F1g

�1Fn [Fn/En;

finishing the inductive step.

Assume now that (1) holds, and, for any x 2M and ı > 0, define V.x; ı/D ¹g 2
G j d.gx;x/ < ıº and note that for any f 2G,

f � V.x; ı/ � V.x; ı/�1 D f � V.x; ı/ � V.x; ı/� f � V.x; 2ı/

D
®
g 2G

ˇ̌
d.gx;f x/ < 2ı

¯
:

Suppose that C �M is compact, and assume toward a contradiction that gŒC �\C ¤
; for any g 2 G. Since no orbit is totally bounded, pick ı > 0 such that the orbit of
no point of C admits a finite covering by sets of diameter 8ı, and let

B.x1; ı/[ � � � [B.xn; ı/

be a finite subcover of the cover
S
x2C B.x; ı/ of C . Then for any g there are i; j

such that gŒB.xi ; ı/� \ B.xj ; ı/ ¤ ;, whence d.gxi ; xj / < 2ı. Now, for every i; j
pick if possible some f 2G such that d.f xi ; xj / < 2ı, and let F �G be the finite
set of such f . Then

G D F � V.x1; 4ı/[ � � � [F � V.xn; 4ı/;

and so by Claim 5.2 there is some finite E � G and i such that G D E � V.xi ; 8ı/,
whence G �xi is covered by finitely many open balls of diameter 8ı, contradicting the
choice of ı.

Now, to see that (2) implies (3), suppose that g 2 G and C �M is compact.
Then there is some f1 2G such that

f1
�
C [ gŒC �

�
\
�
C [ gŒC �

�
D;;
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whence, in particular, f1ŒC �\C D;. Letting f2 D f �11 g, we have

f2ŒC �\C D f
�1
1 gŒC �\C � f �11

�
C [ gŒC �

�
\
�
C [ gŒC �

�
D;:

Since gD f1f2, this finishes the proof.

The following lemma is an immediate corollary.

LEMMA 5.3
Let X be a Banach space, and let G be a group of isometries of X such that no
nonzero G-orbit is totally bounded. Then for any finite-dimensional subspace F of X
there exists a T in G such that F \ T ŒF �D ¹0º. In fact, for any finite-dimensional
subspace F of X , any isometry S in G can be written as a product of two such T
in G.

The goal is now to provide a structure result for norm-closed groups of finite-
dimensional isometries for which we will need a couple of lemmas.

LEMMA 5.4
Let X be a Banach space, and let T;U 2L.X/. Then there exists an injective map
fromHT U =.HT \HU / into FT \FU . In particular, if FT \FU D ¹0º, thenHT U D
HT \HU .

Proof
Obviously HT \HU �HT U , and U � Id induces a map from HT U =.HT \HU /

into FU . For any x 2HT U ,

.U � Id/x D .U � T U /x D .Id� T /.Ux/ 2 FT ;

so the map induced by U � Id takes its values in FT \FU .
Finally, if .U � Id/x D 0 for x 2HT U , then Ux D x and T x D T Ux D x, so

x 2HT \HU . This proves that the map induced by U � Id is injective.

LEMMA 5.5
Let X be a Banach space, and let T;U 2GLf .X/. Then

jdimFT � dimFU j � dimFT U � dimFT C dimFU :

Proof
Since T U �IdD .T �Id/CT .U �Id/, we see that FT U � FT CT ŒFU � and therefore
that

dimFT U � dimFT C dimT ŒFU �D dimFT C dimFU :
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Applying this to T U and U�1, it follows that

dimFT � dimFT U C dimFU�1 D dimFT U C dimFU ;

and so dimFT U � dimFT � dimFU . Since also

dimFT U D dimFU�1T�1 � dimFU�1 � dimFT�1 D dimFU � dimFT ;

we find that dimFT U � jdimFT � dimFU j.

LEMMA 5.6
Let X be a Banach space, and let G �GLf .X/ be a bounded subgroup, norm closed
in GL.X/. Then for any nonempty, norm-open U�G, there is a smaller norm-open
set ;¤ V �U such that dimFT is constant for T 2 V .

Proof
We work in the norm topology. Note that for any n the set

Dn D
®
A 2L.X/

ˇ̌
dim.imA/� n

¯

is closed, whence

En D ¹T 2G j dimFT � nº DG \ .IdCDn/

is closed in G. Now, if U� G is nonempty open, then as G D
S
n�1En, it follows

from the Baire category theorem in U that some En \ U has nonempty interior.
Moreover, if n is minimal with this property, we see that V D int.En\U/nEn�1 ¤;

and dimFT D n for all T 2 V .

From this we deduce the following lemma.

LEMMA 5.7
Let X be a Banach space, and let G �GLf .X/ be a bounded subgroup, norm closed
in GL.X/. Then there are ı > 0 and a constant N such that for all T;U 2G,

kT �U k< ı)jdimFT � dimFU j �N:

It follows that if G is norm compact, then

sup¹dimFT j T 2Gº<1:

Proof
Without loss of generality,G � Isomf .X/. By Lemma 5.6, there are S 2G and ı > 0
such that dimFT D dimFS whenever kT �Sk � ı. It follows that if T;U 2G satisfy
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kT � U k < ı and thus kST U�1 � Sk < ı, then dimFST U�1 D dimFS and so, by
Lemma 5.5,

jdimFT � dimFU j D jdimFT � dimFU�1 j

� dimFT U�1

� dimFS�1 C dimFST U�1

D 2dimFS :

Setting N D 2dimFS , the result follows.
If now G is norm compact, it can be covered by a finite number of open balls of

radius ı, whereby dimFT is bounded above for T 2G.

LEMMA 5.8
Let X be a Banach space with a Gâteaux differentiable norm, and let T be a finite-
dimensional isometry on X . Then

FT D J ŒHT �?:

Proof
From Lemma 4.3 we easily deduce that J ŒHT ��HT � and therefore, as FT is closed,

FT D .F
?
T /? D .HT �/? � J ŒHT �?:

It follows by Lemma 4.1(a) that

X DHT ˚FT �HT ˚ J ŒHT �? �X;

whence FT D J ŒHT �?.

THEOREM 5.9
Let X be a Banach space with a Gâteaux differentiable norm, let G � Isomf .X/ be
norm closed in GL.X/, and assume that no nonzero point of X has a totally bounded
G-orbit. Then G is discrete in the norm topology and hence is locally finite; that is,
any finitely generated subgroup is finite.

Proof
We work in the norm topology on G. Assume toward a contradiction that G is not
discrete. Then for every neighborhood W of Id there is a finite-dimensional isom-
etry U 2W with dimFU � 1. By Lemma 5.7, let n � 1 be minimal such that for
some neighborhood V of Id in G we have dim.FU / � n for all U 2 V . Let U be
a conjugacy-invariant neighborhood of Id in G such that U2 � V , and choose an
isometry T 2U such that dim.FT /D n.
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Suppose first that S is an isometry such that SŒFT � \ FT D ¹0º. Then, since
FSTS�1 D SŒFT �, Lemma 5.4 implies that HTSTS�1 D HT \ HSTS�1 . However,
T 2U and U is conjugacy invariant, so TSTS�1 2U2 � V , and thus

codim.HT /D dim.FT /

D n

� dim.FTSTS�1/

D codim.HTSTS�1/

D codim.HT \HSTS�1/;

whence, as codim.HT /D codim.HSTS�1/, we have HT DHSTS�1 D SŒHT �.
Now, by Lemma 5.3, any isometry U can be written as a product of two isome-

tries S1; S2 in G such that Si ŒFT � \ FT D ¹0º. By the above calculation, HT is
Si -invariant and therefore also U -invariant. On the other hand, by Lemma 4.3, we
have that U �J ŒHT � D JU�1ŒHT � D J ŒHT �, so, as U is arbitrary, J ŒHT � is
G-invariant.

Since, by Lemma 5.8, FT D J ŒHT �?, it is a nontrivial, finite-dimensional,
G-invariant subspace of X , contradicting that no orbit is totally bounded.

To see that G is locally finite, note that by Lemma 3.8 any finitely generated sub-
group of Isomf .X/ is precompact in the norm topology and therefore, being discrete,
must be finite.

THEOREM 5.10
Let X be a Banach space with separable dual, let G � GLf .X/ be a bounded sub-
group, norm closed in GL.X/, and assume that no nonzero point of X has a totally
bounded G-orbit. Then G is discrete and locally finite in the norm topology.

Proof
By renorming X , we may assume that G � Isomf .X/. Thus, by Proposition 4.6
and the fact that a norm whose dual norm is LUR is Gâteaux differentiable, we can
also suppose that the norm on X is Gâteaux differentiable, so the result follows from
Theorem 5.9.

5.2. Decompositions by strongly closed subgroups of GLf .X/

THEOREM 5.11
Suppose that X is a separable reflexive Banach space and that G � GLf .X/ is
bounded and strongly closed in GL.X/. Let also G0 �G denote the connected com-
ponent of the identity in G.
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Then G0 acts nearly trivially on X and therefore is a compact Lie group. More-
over, G0 is open in G, while G=G0 is a countable, locally finite and thus amenable
group. It follows that G is an amenable Lie group.

Furthermore, X admits a G-invariant decomposition X DX1˚X2˚X3˚X4,
where
(1) no nonzero point of X1 has a relatively compact G-orbit;
(2) every G-orbit on X2˚X3˚X4 is relatively compact;
(3) X4 is the subspace of points which are fixed by G;
(4) X3 is finite-dimensional or has a finite-dimensional decomposition;
(5) X2 is finite-dimensional and X1 ˚X3 ˚X4 is the subspace of points which

are fixed by G0;
(6) if X1 D ¹0º, then G acts nearly trivially on X ;
(7) if X1 ¤ ¹0º, then X1 is infinite-dimensional, has a finite-dimensional decom-

position, and admits a G-invariant Schauder decomposition (possibly with
finitely many terms)

X1 D Y1˚ Y2˚ � � � ;

where every Yi has a Schauder basis.
The norm of the associated projection onto X4 (resp., X1, X2, X3) is at most
kGk2 (resp., 2kGk2), and in (7) the finite-dimensional decomposition and the
G-invariant Schauder decomposition both have constant at most 2kGk2, where
kGk D supg2G kgk.

Proof
Note that, by Proposition 3.5, since X� is separable and G �GLf .X/, the norm and
strong operator topologies coincide on G.

Let now X DKG ˚ .KG�/? be the G-invariant decomposition given by Theo-
rem 4.10, and, for simplicity of notation, let X1 D .KG�/?.

We claim that GjX1 D ¹T jX1 j T 2Gº is a strongly closed subgroup of GL.X1/.
To see this, suppose that Tn 2 G and T 2 GL.X1/ are such that TnjX1 �!SOT

T . By

Proposition 3.2, GjKG D ¹T jKG j T 2 Gº � GL.KG/ is precompact in the strong
operator topology and thus .TnjKG /n2N has a subsequence .Tni jKG /i2N converging
in the strong operator topology to an operator S 2 GL.KG/, whence Tni �!SOT

S ˚

T 2 GL.KG ˚ X1/. Since G is closed in the strong operator topology, we see that
S ˚ T 2G, whence T D .S ˚ T /jX1 2GjX1 , showing that GjX1 is strongly closed.

Now, by Proposition 3.5, since X�1 is separable and GjX1 �GLf .X1/, the norm
and strong operator topologies coincide on GjX1 . Moreover, as there is no nonzero
relatively compact GjX1 -orbit on X1, Theorem 5.10 implies that GjX1 is discrete
and locally finite. Being separable, it must be countable. Moreover, since the map
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T 2 G 7! T jX1 2 GjX1 is strongly continuous, its kernel G0 D ¹T 2 G j X1 �HT º
is a countable index, closed normal subgroup of the Polish group G and thus must
be open by the Baire category theorem. Since every G0-orbit on X is relatively com-

pact, Proposition 3.2 implies that G0 DG0
SOT

is compact in the strong operator topol-
ogy and so, by Theorem 3.11, G0 acts nearly trivially on X , and since G0 � G0, the
same holds for G0. It follows that G0 is a compact Lie group, whence also that G
is Lie, and that G0 is a compact, open, normal subgroup in G. Since G0 is compact,
ŒG0 W G0� <1, and so G=G0 is an extension of the finite group G0=G0 by the locally
finite group G=G0 and thus is itself locally finite. Thus, as both G0 and G=G0 are
amenable, so is G.

We now consider the canonical complement KG D HG ˚ ..HG�/? \ KG/ to
X1 D .KG�/?. Set Y D ..HG�/? \ KG/, and let � W G ! GL.Y / be the strongly
continuous representation �.T /D T jY . Since T jX1 D IdX1 for all T 2G0, �.G0/ is
strongly closed in GL.Y /, and so, by Theorem 3.11, Y admits a G0-invariant decom-
position

Y DH�.G0/˚ .H�.G0/�/?;

with X2 D .H�.G0/�/? finite-dimensional. Moreover, since G0 is normal in G, both
X3 DH�.G0/ and .H�.G0/�/? are G-invariant. So, letting X4 DHG , we obtain the
desired decomposition.

If .KG�/? D X1 ¤ ¹0º, then X1 is infinite-dimensional and must have a finite-
dimensional decomposition by Theorem 4.16. Similarly, the existence of the
G-invariant decomposition into subspaces with Schauder bases follows from Theo-
rem 4.17 plus the fact that there are no nontrivial G-invariant finite-dimensional sub-
spaces of X1. On the other hand, if X1 D ¹0º, then G is almost periodic and therefore
acts nearly trivially on X by Theorem 3.11.

6. Spaces with a small algebra of operators

6.1. Unconditional sequences of eigenvectors

LEMMA 6.1
Let 0 < 	 < � < � and 0 � ˛ � 2� . For any interval I � N of cardinality at least
3�=	 C 1, there exists a subinterval J � I of cardinality at least �=	 such that for
all m 2 J , d.m	;˛C 2�N/ < �.

Proof
Let .un/n2I be the finite sequence .n	 � ˛/n2I , and note that the difference between
the first and last element of un is at least 3� , while the difference between two succes-
sive elements is at most 	 < � . Write the first element of the sequence as k2� C ˛0,
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for some ˛0 2 Œ0; 2�Œ, and let ˛0 D k2� C ˛ if ˛0 � ˛, or ˛0 D .kC 1/2� C ˛ other-
wise.

Let n1 be the largest element of I such that un1 � ˛
0, and note that the difference

between un1 and the first element of the sequence is at most 2� . Now consider p 2N
maximal with 1 � p < �=	 , and note that un1Cp � un1 � p	 < �. Therefore, since
˛0 2 Œun1 ; un1Cp�, d.un; ˛

0/ D d.n	;˛ C 2�N/ < � for any n in the interval J D
¹n1; : : : ; n1 C pº. This interval has cardinality at least �=	 . The difference between
the first un and un1Cp is at most 2�Cp	 � 2�C� < 3� ; therefore, J is a subinterval
of I .

LEMMA 6.2
Let .�k/k�1 be a sequence of real numbers in the interval �0;�Œ. Let .	k/k�1 be a
sequence of positive real numbers such that �1=	1 � 1 and �k=	k > 3�=	k�1C 1 for
all k > 1. Let n 2 N, and let .˛k/1�k�n be a finite sequence of real numbers. Then
there exists some m 2N such that for all k D 1; : : : ; n,

d.m	k ; ˛k C 2�N/ < �k :

Proof
First, we may by the previous lemma pick an interval Jn of cardinality at least �n=	n
such that for all m 2 Jn, d.m	n � ˛n; 2�N/ < �n. Since �n=	n � 1 > 3�=	n�1, the
lemma applies again to obtain an interval Jn�1 � Jn of cardinality at least �n�1=	n�1
such that for all m 2 Jn�1, d.m	n�1 � ˛n�1; 2�N/ < �n�1. After n steps we have
obtained the desired result for any m in some interval J1 of cardinality at least �1=	1
and therefore nonempty by hypothesis.

PROPOSITION 6.3
Let T be a linear contraction on a complex Banach space X having infinitely many
eigenvalues of modulus 1. Then, for any � > 0, X contains a .1C �/-unconditional
basic sequence.

Proof
Modulo replacing T by some �T , j�j D 1, we can suppose that there are distinct
	n converging to zero such that each ei�n is an eigenvalue for T with corresponding
normalized eigenvector xn 2 X . Moreover, without loss of generality, we can also
assume that 0 < 	n < � and that, given �n > 0 such that

P1
nD1 �n � ı, where 2Cı

2�ı
<

1C �, one has �1=	1 � 1 and �n=	n > 3�=	n�1C 1 for all n > 1.
Suppose that N � 1, and consider a vector of the form x D

P
n�N �nxn for

�n 2C. Now, if ei˛n 2 T and m� 1, we have
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Tm.x/D
X
n�N

eim�n�nxn;

and so
���Tm.x/�

X
n�N

ei˛n�nxn

���D
���
X
n�N

.eim�n � ei˛n/�nxn

����
X
n�N

j1�ei.˛n�m�n/jj�nj:

Choosingm according to Lemma 6.2 so that d.m	n�˛n; 2�N/ < �n for each n�N ,
we conclude that

���Tm.x/�
X
n�N

ei˛n�nxn

����
X
n�N

�nj�nj � ı � sup
n�N

j�nj (1)

and so also that
���
X
n�N

ei˛n�nxn

����
���
X
n�N

�nxn

���C ı � sup
n�N

j�nj: (2)

Let n0 �N be chosen such that j�n0 j D supn�N j�nj, and set ei˛n0 D 1 and ei˛n D
�1 for n¤ n0. By (2), we then have

2j�n0 j �
����n0xn0 C

X
n�N

n¤n0

�nxn

���C
����n0xn0 �

X
n�N

n¤n0

�nxn

���

� 2
���
X
n�N

�nxn

���C ı � j�n0 j;

that is, supn�N j�nj D j�n0 j �
2
2�ı
k
P
n�N �nxnk. Combining this with (2), for any

�n and ei˛n 2 T, we have
���
X
n�N

ei˛n�nxn

���� 2C ı
2� ı

���
X
n�N

�nxn

���;

which shows that .xn/1nD1 is a .1C �/-unconditional basic sequence.

We refer the reader to [50] for results about the existence of 1-unconditional basic
sequences in a similar setting.

With this in hand, we may prove the following.

THEOREM 6.4
Let X be a Banach space containing no unconditional basic sequence. Then any
bounded subgroup G �GLin.X/ is contained in GLf .X/ and so, in particular,

Isomaf .X/D Isomf .X/:
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Proof
By Theorem 3.4, it suffices to prove that any bounded subgroup G � GLaf .X/ is
contained in GLf .X/ and, by renorming, that any almost finite-dimensional isometry
is finite-dimensional.

Assume first thatX is complex. Since almost finite-rank operators are Riesz oper-
ators, the spectrum of an almost finite-dimensional isometry T of X is either a finite
or an infinite sequence of distinct eigenvalues with finite multiplicity, together with
the value 1, which is the limit of the sequence in the infinite case (see [35]). Since X
does not contain an unconditional basic sequence, by Proposition 6.3, the second case
cannot occur and so �.T / is finite. Lemma 3.12 then implies that T � Id must have
finite rank.

If instead X is real, we claim that the complexification OX of X does not contain
an unconditional basic sequence either. For if it did, then X ˚X would in particular
contain a real unconditional sequence, spanning a real subspace Y . And since some
subspace of Y must either embed into the first or second summand of the decomposi-
tionX˚X ,X itself would contain a real unconditional basic sequence, contradicting
our assumption.

Now, as mentioned in Section 2.2, if T is an almost finite-dimensional isom-
etry of X , OT is an almost finite-dimensional isometry of OX , which then must be
finite-dimensional. Since F OT D FT C iFT , we finally conclude that also FT is finite-
dimensional.

Combining Theorem 5.10 and Theorem 6.4, we also obtain the following.

COROLLARY 6.5
Let X be a Banach space with separable dual and not containing an unconditional
basic sequence. Let G � GLaf .X/ be a bounded subgroup, and assume that no
nonzero point of X has a totally bounded G-orbit. Then G is discrete and locally
finite in the norm topology.

Proof

Since GLaf .X/ is norm closed in GL.X/, by replacing G by G
k�k

we may assume
that G is norm closed. Also, by renorming X , we can suppose that G � Isomaf .X/.
Then, since by Theorem 6.4, G � Isomf .X/, Theorem 5.10 applies.

6.2. Groups of isometries in spaces with few operators
We now combine the results of the previous sections in order to obtain a description of
the group of isometries of a separable reflexive space X with a small algebra of oper-
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ators. In this case, Proposition 3.5 will ensure that the norm and the strong operator
topology coincide on Isom.X/.

We recall that an infinite-dimensional Banach space is decomposable if it can
be written as the direct sum of two infinite-dimensional subspaces and hereditarily
indecomposable (HI) if it has no decomposable subspace. The first construction of
an HI space was given by Gowers and Maurey in [35] to solve the unconditional
basic sequence problem, since it is clear that an HI space cannot contain any sub-
space with an unconditional basis. Furthermore, Gowers and Maurey proved that any
operator on a complex HI space is a strictly singular perturbation of a multiple of
the identity. We will call this latter property of a (real or complex) Banach space the
.�IdC S/-property. Note that the .�IdC S/-property easily implies that the space is
indecomposable, since no projection with infinite-dimensional range and corange is
of the form �IdC S , with S strictly singular.

As an immediate consequence of Theorem 6.4, we have the following.

THEOREM 6.6
Let X be a Banach space with the .�IdC S/-property and containing no uncondi-
tional basic sequence. Then each individual isometry acts nearly trivially on X .

COROLLARY 6.7
Let X be a separable reflexive space with the .�IdC S/-property and containing no
unconditional basic sequence. Assume that X does not have a Schauder basis. Then
Isom.X/ acts nearly trivially on X .

Proof
Note that, depending on whether X is complex or real, we have by Theorem 6.6 that

Isom.X/D T� Isomf .X/

or

Isom.X/D ¹�1; 1º � Isomf .X/:

Thus, by Proposition 3.5, the norm and strong operator topologies coincide on
Isom.X/. So, as Isomf .X/ is norm closed in Isom.X/, it is strongly closed in
Isom.X/ and hence also in GL.X/. By Corollary 4.15, we see that Isomf .X/ and
thus also Isom.X/ acts nearly trivially on X .

COROLLARY 6.8
Let X be a separable, reflexive, complex HI space without a Schauder basis. Then
Isom.X/ acts nearly trivially on X .
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Of course, in the case when X is permitted to have a Schauder basis, Theo-
rem 6.6 does not itself describe the global action of the group Isom.X/, but with some
extra hypotheses, we can get more information. Observe first that if X is an infinite-
dimensional space with the .�IdC S/-property, then GL.X/DK? �GLs.X/.

THEOREM 6.9
Let X be a separable, infinite-dimensional, reflexive space with the .�Id C
S/-property and containing no unconditional basic sequence. Assume that G �
GLs.X/ is a bounded subgroup. Then either
(i) G acts nearly trivially on X , or
(ii) X admits a G-invariant decomposition F ˚H , where F is finite-dimensional

and GjH D ¹T jH j T 2Gº is a countable, discrete, locally finite subgroup of
GLf .H/, none of whose nonzero orbits are relatively compact; moreover, in
this case, X has a Schauder basis.

Proof
By Theorem 6.4, G � GLf .X/. Also, as in the proof of Corollary 6.7, we see that
Isomf .X/ is strongly closed in GL.X/. By renorming, we may assume that G �

Isomf .X/, whence also M D G
SOT

is a subgroup of Isomf .X/. Applying Theo-
rem 5.11 to M , we obtain a decomposition

X DX1˚X2˚X3˚X4:

Here either X1 D ¹0º, in which case (i) holds, or X1 has a complemented sub-
space with a Schauder basis.

By the indecomposability of X , in the latter case, X itself has a Schauder basis,
H DX1 has finite codimension in X , and F DX2˚X3˚X4 is finite-dimensional.
Furthermore,M jX1 D ¹T jX1 j T 2M º is a strongly closed subgroup of GL.X1/ con-
tained in Isomf .X1/ such that no nonzero M -orbit on X1 is relatively compact. By
Proposition 3.5, the strong operator and norm topologies coincide on M jX1 , while,
by Theorem 5.10, M jX1 is countable, discrete, and locally finite. It follows that
GjX1 DM jX1 .

While the real HI space constructed by Gowers and Maurey has the .�Id C
S/-property, this does not generalize to all real HI spaces (see [28]). Nor is it true
that the complexification of a real HI space is complex HI (see [28] and [33, Proposi-
tion 3.16]). So it is not clear whether Corollary 6.8 extends to the real case.

Our methods may also be used in spaces with the .�IdC S/-property containing
unconditional basic sequences. Such spaces do exist (see, e.g., [5]).
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THEOREM 6.10
Let X be a separable reflexive space with the .�Id C S/-property. Then either
Isom.X/ acts nearly trivially on X , or X admits an isometry-invariant decompo-
sition X D F ˚ Y , where F is finite-dimensional and where no orbit of a nonzero
point of Y under Isom.X/ is totally bounded.

Proof
By Theorem 3.4, depending on whether X is complex or real, we have that

Isom.X/D T� Isomaf .X/

or

Isom.X/D ¹�1; 1º � Isomaf .X/;

and so Proposition 3.5 applies to deduce that the strong operator and the norm topolo-
gies coincide on Isom.X/, whence G D Isomaf .X/ is strongly closed in GL.X/.

By Theorem 4.10, we have a G-invariant decomposition X D KG ˚ .K�G/
?,

where either X DKG or KG has infinite codimension. Furthermore, X is indecom-
posable, so either X DKG or KG is finite-dimensional. In the first case, G is almost
periodic and thus by Theorem 3.11 acts nearly trivially on X . In the second case, we
define F DKG and Y D .K�G/

?.

7. Maximality and transitivity in spaces with few operators
Let us begin by reviewing the various types of norms defined and studied by
Pełczyński and Rolewicz in [52] and [58].

Definition 7.1
Let .X;k � k/ be a Banach space, and, for any x 2 SX , let O.x/ denote the orbit of x
under the action of Isom.X;k � k/. The norm k � k on X is
(i) transitive if for any x 2 SX , O.x/D SX ;
(ii) almost transitive if for any x 2 SX , O.x/ is dense in SX ;
(iii) convex transitive if for any x 2 SX , conv O.x/ is dense in BX ;
(iv) uniquely maximal if whenever kj � jk is an equivalent norm on X such that

Isom.X;k � k/� Isom.X;kj � jk/, then kj � jk is a scalar multiple of k � k;
(v) maximal if whenever kj � jk is an equivalent norm on X such that Isom.X;

k � k/� Isom.X;kj � jk/, then Isom.X;k � k/D Isom.X;kj � jk/.

Here, the implications (i))(ii))(iii) as well as (iv))(v) are obvious. Further-
more, Rolewicz [58] proved that any convex-transitive norm must be uniquely maxi-
mal, and E. R. Cowie [17] later reversed this implication by showing that a uniquely
maximal norm is convex transitive. So (i))(ii))(iii),(iv))(v).
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Almost transitive norms are not too difficult to obtain. For example, the classical
norm on Lp.Œ0; 1�/, 1� p <1, is almost transitive (see [36], [58]). It is also known
that the nontrivial ultrapower of a space with an almost transitive norm will have a
transitive norm. There are therefore many examples of nonseparable, non-Hilbertian
spaces with a transitive norm.

Rolewicz [58] also proved that if a space has a 1-symmetric basic sequence, then
the norm is maximal. Therefore, the usual norms on the spaces c0 and `p , 1� p <1,
are maximal, though they are not convex transitive unless pD 2.

More interesting than asking whether a specific norm on a Banach space X has
one of the above forms of transitivity or maximality is the question of whether X
admits an equivalent norm with these properties. In this direction, Becerra Guerrero
and Rodríguez-Palacios [8, Theorem 6.8 and Corollary 6.9] showed the following
interesting fact.

THEOREM 7.2 (Becerra Guerrero and Rodríguez-Palacios)
Suppose that X is either Asplund or has the Radon–Nikodym property and that the
norm k � k of X is convex transitive. Then k � k is almost transitive, uniformly convex,
and uniformly smooth. In particular, X is super-reflexive.

This gives a list of spaces with no equivalent convex-transitive norm, c0, `1,
Tsirelson’s space T , Schlumprecht’s space S , and Gowers–Maurey’s space GM, for
example.

Lusky [46] proved that every separable Banach space Y is 1-complemented in
some almost transitive separable space. So there are many different spaces with almost
transitive norms, and, depending on the choice of Y , examples without a Schauder
basis. Note, however, that Lusky’s theorem cannot be improved to include reflexivity;
that is, if Y is reflexive but not super-reflexive, then, by Theorem 7.2, Y does not even
embed into a reflexive space with a convex-transitive norm.

However, the question of whether any super-reflexive space admits an equivalent
almost transitive norm has remained open hitherto. This question is due to Deville,
Godefroy, and Zizler [21, p. 176, Problem IV.2]. Based on results by Finet [30, p. 89],
they observed that a positive answer would imply that if a Banach space X has an
equivalent norm with modulus of convexity of type p � 2 and another equivalent
norm with modulus of smoothness of type 1� q � 2, then X has an equivalent norm
with both of these properties, which would be exceedingly useful in renorming theory.
However, as we will see, this approach does not work.

We now answer the question of Deville, Godefroy, and Zizler along with Wood’s
problems of whether any Banach space has an equivalent maximal norm or even
whether any bounded subgroup G �GL.X/ is contained in a maximal bounded sub-
group.
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LEMMA 7.3
There is a separable, infinite-dimensional, super-reflexive, complex HI space without
a Schauder basis.

Proof
Recall that for a space X , if we define

p.X/D sup¹t � 2 jX has type tº

and

q.X/D inf¹c � 2 jX has cotype cº;

then X is said to be near-Hilbert if p.X/D q.X/D 2. Now, by [27], there exists a
uniformly convex and therefore super-reflexive complex HI space X with a Schauder
basis. Moreover, by [27], for any 1 < p < 2, X may be chosen so that for any finite
sequence x1; : : : ; xn of successive normalized vectors on the basis of X , we have

kx1C � � � C xnk �
n1=p

log2.nC 1/
;

which implies that X does not have type more than p. In particular, X is not near-
Hilbert, and by classical results of Szankowski [64] (see also [45, Theorem 1.g.6]),
this implies that some subspace Y ofX does not have the approximation property and
therefore fails to have a Schauder basis. On the other hand, Y is still super-reflexive
and HI.

More precise estimates about type and cotype are given in [16] and imply that for
any choice of parameters in the construction of [27], the space X is not near-Hilbert
and therefore has a subspace without the approximation property. On the other hand,
it is also proved in [16] that for any � > 0, the space X (and therefore Y as well) may
be chosen to have type 2� � and cotype 2C �.

PROPOSITION 7.4
Let X be an infinite-dimensional Banach space with norm k � k. Assume that Isom.X;
k � k/ acts nearly trivially on X . Then k � k is not maximal.

Proof
Let k � k be such a norm on X , and let X D F ˚H be the associated decomposition
for which F is finite-dimensional and Isom.X/ acts trivially on H . We fix a norm 1

vector x0 in H , write H as a direct sum H D Œx0�˚M , and define an equivalent
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norm kj � jk on X by

kjf C ˛x0Cmjk D kf kC j˛j C kmk;

when f 2 F , ˛ is scalar, and m 2M .
If T is an isometry for k � k, then T jH D �IdH with j�j D 1, and so the equalities

��̌̌T .f C ˛x0Cm/
��̌̌ D kjTf C ˛�x0C �mjk D kTf kC j˛j C kmk

and

kjf C ˛x0Cmjk D kf kC j˛j C kmk

show that T is also a kj � jk-isometry. Therefore, any k � k-isometry is a kj � jk-isometry.
Furthermore, the map L on X defined by

L.f C ˛x0Cm/D f � ˛x0Cm

is a kj � jk-isometry but not a k � k-isometry, since there is no scalar � for which LjH D
�IdH . This shows that k � k is not maximal.

THEOREM 7.5
There exists a separable, super-reflexive, complex Banach space X that admits no
equivalent maximal norm. In fact, if k � k is any equivalent norm on X , then Isom.X;
k � k/ acts nearly trivially on X and thus is a compact Lie group.

Proof
Let X be the space given by Lemma 7.3, and notice that, by Corollary 6.8, the isom-
etry group acts nearly trivially on X for any equivalent norm. In particular, by Propo-
sition 7.4, X cannot have an equivalent maximal norm.

The above example is, of course, particularly strong since, for every equivalent
norm, the isometry group is compact. So one may suspect there to be weaker coun-
terexamples to the problem of Deville, Godefroy, and Zizler among more classical
spaces.

In the real case, we obtain the following counterexample to Wood’s questions,
which, however, is not super-reflexive.

THEOREM 7.6
There exists a real, separable, reflexive Banach space with no equivalent maximal
norm.
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Proof
The reflexive HI space GM of Gowers and Maurey [35] does not have type p > 1.
Therefore, the results of Szankowski [64] (see also [45, Theorem 1.g.6]) imply that
some subspace Y of GM fails to have a Schauder basis. Furthermore, Y contains
no unconditional basic sequence and, since by [35] every operator from a subspace
of X into X is a strictly singular perturbation of a multiple of the inclusion map,
Y satisfies the .�Id C S/-property. The result then follows from Theorem 6.7 and
Proposition 7.4.

In connection with this, we should mention the following conjecture due to
Jarosz [39, p. 54].

CONJECTURE 7.7 (K. Jarosz)
Suppose that G is a group and that X is a real Banach space with dimX � jGj. Then
X admits an equivalent renorming such that Isom.X/Š ¹�1; 1º �G.

In [29] this was verified for finite groups G and separable spaces X , but, as we
will see, the conjecture fails for infinite G.

PROPOSITION 7.8
If X is the real HI space considered in Theorem 7.6, then for any norm on X , the
group of isometries on X is either finite or of cardinality 2@0 . In particular, Jarosz’s
conjecture does not hold in general.

Proof
Assume that X is the real HI space considered in Theorem 7.6. Then Isom.X/ acts
nearly trivially on X and hence is a compact Lie group. It follows that Isom.X/ is
either finite or of size 2@0 .

8. Questions and further comments

8.1. Problems concerning spaces with few operators
We suspect that the usage of reflexivity and the nonexistence of a Schauder basis in
Theorem 7.5 are not necessary. That is, we conjecture the following.

CONJECTURE 8.1
Let X be a complex HI space. Then the group of isometries acts nearly trivially on X .

A few comments on this conjecture are in order. First of all, the following result
was essentially proved by Cabello-Sánchez [14, Theorem 2]. As we state a slightly
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more general result than in [14], we give the proof of the theorem for the sake of
completeness.

THEOREM 8.2 (Cabello-Sánchez)
Let G D T � Isomf .X/ (resp., G D ¹�1; 1º � Isomf .X/) be the group of nearly
trivial isometries of a space X . If the action of G on X is transitive, then the norm of
X is Euclidean, that is, X is isometric to Hilbert space.

Proof
By transitivity, the only Isomf .X/-invariant subspaces of X are the trivial ones.
Therefore, by [14, Lemma 2], there exists an Isomf .X/-invariant inner product h�; �i
on X and some x0 2 SX such that hx0; x0i D 1. Now, if T 2G and � 2 T is chosen
such that U D ��1T 2 Isomf .X/, then

hT x0; T x0i D h�Ux0; �Ux0i D j�j
2hUx0;Ux0i D 1

as well. By transitivity of G, this implies that hx;xi D kxk2 for all x 2 X , which
proves the theorem.

So by Theorem 6.6, we have the following.

COROLLARY 8.3
Let X be a space with the .�IdC S/-property and without an unconditional basic
sequence. Then no equivalent norm on X is transitive.

As a tool toward proving Conjecture 8.1, it may be interesting to observe that
the spectrum �.T / depends continuously on T when T belongs to Isomf .X/. For
this, when X a complex space and T 2 Isomf .X/, we denote by F�.T / the image
of the spectral projection associated to the eigenvalue �, and note that F�.T / D
ker.T � �Id/ by Gelfand’s theorem. So, by Lemma 3.9, FT D

L
�¤1F�.T / and

HT D F1.T /.

LEMMA 8.4
Suppose that X is a complex space and that T 2 Isomf .X/. Then if Pi denotes the
canonical projection of X onto F�i .T / corresponding to the decomposition

X D F�1.T /˚ � � � ˚F�m.T /;

we have kPik D 1 for every i . Since FT is the complement ofHT D F1.T /, it follows
that the projection onto FT has norm at most 2.
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Proof
Let pn.t/ D n�1.1 C t C � � � C tn�1/. Since the operator pn.��1i T / has norm at
most 1 and acts as the identity on F�i .T /, we have for any x 2 F�i .T / and y 2L
j¤i F�j .T /,

��xC pn.��1i T /.y/
��D ��pn.��1i T /.xC y/

��� kxC yk:

Note also that

.Id� ��1i T /pn.�
�1
i T /D n

�1.Id� ��ni T n/:

Since T � Id is injective on
L
j¤i F�j .T / and therefore also invertible onL

j¤i F�j .T /, we have for y 2
L
j¤i F�j .T /,

pn.�
�1
i T /.y/D n

�1
�
.Id� ��1i T /j

L
j¤i F�j .T /

��1
.Id� ��ni T n/.y/;

whereby since .��ni T n/n is bounded, limn!1 pn.�
�1
i T /.y/ D 0. Applying this to

the inequality kx C pn.�
�1
i T /.y/k � kx C yk, we get kPi .x C y/k D kxk �

kxC yk.

LEMMA 8.5
Suppose that X is a complex space. Then for any S;T 2 Isomf .X/, � 2 �.T /, and

1; : : : ;
k 2 �.S/, if

F�.T /\

kM
iD1

F�i .S/¤ ¹0º;

then

min
i
j
i � �j � kkS � T k:

It follows that for any S;T 2 Isomf .X/ and � 2 �.T /,

dimF�.T /� dim
M

j���j�j	.S/j�kS�T k

F�.S/:

Proof
Suppose that xi 2 F�i .S/ and that x1C � � � C xk 2 F�.T /. Then, by Lemma 8.4, we
have

min
i
j
i � �j � kx1C � � � C xkk � min

i
j
i � �j

�
kx1kC � � � C kxkk

�

� kmin
i
j
i � �j �max

j
kxj k
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� kmax
j

��.
j � �/xj
��

� k
��.
1 � �/x1C � � � C .
k � �/xk

��
D k

��S.x1C � � � C xk/� T .x1C � � � C xk/
��

� kkS � T k � kx1C � � � C xkk:

Dividing by kx1C � � � C xkk, we get mini j
i � �j � kkS � T k.
Now, suppose toward a contradiction that A D ¹
 2 �.S/ j j
 � �j � j�.S/j �

kS � T kº and that

dimF�.T / > dim
M
�2A

F�.S/:

Then, as X D
L
�2	.S/F�.S/, we must have

F�.T /\
M

�2	.S/nA

F�.S/¤ ¹0º

and so j
� �j � j�.S/j � kS � T k for some 
 2 �.S/ nA, which is absurd.

LEMMA 8.6
Let K.T/ denote the set of compact subsets of T equipped with the Vietoris topology,
that is, the topology induced by the Hausdorff metric, and let X be a complex space.
Then T 7! �.T / is norm continuous as a map from Isomf .X/ to K.T/.

Proof
Using that GL.X/ is a norm-open subset of L.X/, we see that if Sn �!

n!1
T and

�n �!
n!1

� for �n 2 �.Sn/, then also � 2 �.T /. It follows that if U � T is open and

�.T /�U, then �.S/�U for all S in a neighborhood of T . So T 7! �.T / is at least
semicontinuous.

For the other half of continuity, note first that by Lemma 5.7 there is someN such
that j�.S/j �N for all S in some neighborhood N of T . Therefore, by Lemma 8.5,
for all S 2N and � 2 �.T /,

min
�2	.S/

j
� �j �N kS � T k:

It follows that if U� T is open and �.T /\U¤ ;, then also �.S/\U¤ ; for all
S in a neighborhood of T , finishing the proof of continuity.

Finally, several examples of nonreflexive HI spaces have been considered in the
literature. Gowers [34] constructed a separable HI space such that every subspace has
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nonseparable dual, and Argyros, Arvanitakis, and Tolias [3] constructed a nonsepa-
rable, (necessarily nonreflexive) HI space. Also, the Argyros–Haydon space AH (see
[4]) is HI and has dual isomorphic to `1. As noted, any single isometry of a complex
HI space X must act nearly trivially on X . But nothing is known about the global
behavior of Isom.X/ even in the above-mentioned examples.

8.2. Problems concerning Hilbert space
As mentioned in the introduction, the following strong versions of the second part of
Mazur’s rotation problem remain open.

Problem 8.7
Suppose that k � k is an equivalent maximal or almost transitive norm on H . Must k � k
be Euclidean?

Also, though not every bounded subgroup G � GL.H / permits an equivalent
G-invariant Euclidean norm, the following is open.

Problem 8.8
Suppose that G � GL.H / is a bounded subgroup. Must there be an equivalent
G-invariant maximal, almost transitive, or even transitive norm on H?

Note that by Theorem 7.2, convex transitivity coincides with almost transitivity
on H .

In [13] it is mentioned that if X is a space with an almost transitive norm and
there exists an isometry Id C F for which F has rank 1, then X is isometric to a
Hilbert space. However, the following question is still open.

Problem 8.9 (Cabello-Sánchez)
Let X be a space with an (almost) transitive norm and which admits a nontrivial
finite-dimensional isometry. Must X be Hilbertian?

Note that, by Corollary 4.14, if X is separable reflexive and satisfies the hypoth-
esis, then X must have a Schauder basis.

8.3. General questions
Of course, to prove Conjecture 8.1, one would like to improve on Theorem 5.11. For
this, the following would be a intermediate step.
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Problem 8.10
Let X be a separable Banach space, let G � Isomf .X/, and assume that

sup¹dimFT j T 2Gº<1:

Must G act nearly trivially on X?

By Proposition 3.10, this is equivalent to asking whether G is relatively norm
compact. On the other hand, for a potential counterexample, one might begin with the
following.

Problem 8.11
Find a separable space X and a bounded subgroup of GLf .X/ which is infinite and
discrete for SOT.

We know of no real uniformly convex space for which no renorming is maximal.
Considered as a real space, the example of Theorem 7.5 is also HI and uniformly
convex, but does not satisfy the .�IdC S/-property.

Problem 8.12
Does there exist a real super-reflexive Banach space without a maximal norm? With-
out an almost transitive norm?

As mentioned, the fact that there exist complex super-reflexive spaces with no
equivalent almost transitive norms shows that a certain approach to smooth renorm-
ings does not work. Our counterexamples are therefore candidates for a negative
answer to the following question.

Problem 8.13
Does there exist a Banach space X and constants 1� q � 2 � p such that the set of
equivalent norms on X with modulus of convexity of type p and the set of equivalent
norms on X with modulus of smoothness of type q are disjoint and both nonempty?
Is the space defined in [27] or one of its subspaces an example of this?

Note that if the norm on a space X is convex transitive, then X has no nontriv-
ial isometry-invariant subspaces. Thus, if X is also separable reflexive and admits a
nontrivial finite-dimensional isometry, Corollary 4.14 implies that X has a Schauder
basis. It would be interesting to know if the existence of a finite-dimensional isom-
etry can be removed; that is, we would be interested in the answer to the following
problem.
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Problem 8.14
Let X be a separable, reflexive, Banach space with a convex-transitive norm. Does it
follow that X has a Schauder basis?

Acknowledgments. We are grateful to J. Melleray, V. Pestov, and the anonymous ref-
erees for many insightful remarks.
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